Added Feb. 25, 2019.
Problem Chapter 4.5.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Log[lambda*x + beta*y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) = c*ln(lambda*x + beta*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added Feb. 25, 2019.
Problem Chapter 4.5.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c*Log[lambda*x] + k*Log[beta*y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) = (c*ln(lambda*x)+k*ln(beta*y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added Feb. 25, 2019.
Problem Chapter 4.5.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*Log[lambda*x]^n*D[w[x, y], y] == (c*Log[lambda*x]^m + s*Log[beta*y]^k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y),x)+b*ln(lambda*x)^n*diff(w(x,y),y) = (c*ln(lambda*x)^m+s*ln(beta*y)^k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added Feb. 25, 2019.
Problem Chapter 4.5.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*Log[lambda*y]^n*D[w[x, y], y] == (c*Log[lambda*x]^m + s*Log[beta*y]^k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y),x)+b*ln(lambda*y)^n*diff(w(x,y),y) = (c*ln(lambda*x)^m+s*ln(beta*y)^k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added Feb. 25, 2019.
Problem Chapter 4.5.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = Log[beta*y]*D[w[x, y], x] + a*Log[lambda*x]*D[w[x, y], y] == b*w[x, y]*Log[beta*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := ln(beta*y)*diff(w(x,y),x)+a*ln(lambda*x)*diff(w(x,y),y) = b*w(x,y)*ln(beta*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added Feb. 25, 2019.
Problem Chapter 4.5.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = a*Log[lambda*x]^n*D[w[x, y], x] + b*Log[beta*y]^k*D[w[x, y], y] == c*Log[gamma*x]^m*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := a*ln(lambda*x)^n*diff(w(x,y),x)+b*ln(beta*y)^k*diff(w(x,y),y) = c*log(gamma*x)^m*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________