6.4.13 5.1

6.4.13.1 [1102] Problem 1
6.4.13.2 [1103] Problem 2
6.4.13.3 [1104] Problem 3
6.4.13.4 [1105] Problem 4
6.4.13.5 [1106] Problem 5
6.4.13.6 [1107] Problem 6

6.4.13.1 [1102] Problem 1

problem number 1102

Added Feb. 25, 2019.

Problem Chapter 4.5.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) awx+bwy=cln(λx+βy)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*Log[lambda*x + beta*y]*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(ybxa)exp(c((aβybβx)log(a(βy+λx))aλ+bβ+xlog(βy+λx)x)a)}}

Maple

restart; 
pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) =  c*ln(lambda*x + beta*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=(βy+λx)(βy+λx)caλ+bβ_F1(aybxa)e(βy+λx)caλ+bβ

____________________________________________________________________________________

6.4.13.2 [1103] Problem 2

problem number 1103

Added Feb. 25, 2019.

Problem Chapter 4.5.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

awx+bwy=(cln(λx)+kln(βy))w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == (c*Log[lambda*x] + k*Log[beta*y])*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)ex(c+k)a(λx)cxa(βy)kybc1(ybxa)}}

Maple

restart; 
pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) =  (c*ln(lambda*x)+k*ln(beta*y))*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=(βy)kyb(λx)cxa_F1(aybxa)eakybcxab

____________________________________________________________________________________

6.4.13.3 [1104] Problem 3

problem number 1104

Added Feb. 25, 2019.

Problem Chapter 4.5.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

awx+blnn(λx)wy=(clnm(μx)+slnk(βy))w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*Log[lambda*x]^n*D[w[x, y], y] == (c*Log[lambda*x]^m + s*Log[beta*y]^k)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(yb(log(λx))nlogn(λx)Gamma(n+1,log(λx))aλ)exp(1xslogk(β(bGamma(n+1,log(λx))logn(λx)(log(λx))n+bGamma(n+1,log(λK[1]))(log(λK[1]))nlogn(λK[1])+aλy)aλ)+clogm(λK[1])adK[1])}}

Maple

restart; 
pde := a*diff(w(x,y),x)+b*ln(lambda*x)^n*diff(w(x,y),y) =  (c*ln(lambda*x)^m+s*ln(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(y(bln(λx)nadx))excln(_bλ)m+sln((y+bln(_bλ)nad_b(bln(λx)nadx))β)kad_b

____________________________________________________________________________________

6.4.13.4 [1105] Problem 4

problem number 1105

Added Feb. 25, 2019.

Problem Chapter 4.5.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

awx+blnn(λy)wy=(clnm(μx)+slnk(βy))w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*Log[lambda*y]^n*D[w[x, y], y] == (c*Log[lambda*x]^m + s*Log[beta*y]^k)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1((log(λy))nlogn(λy)Gamma(1n,log(λy))λbxa)exp(1ylogn(λK[1])(slogk(βK[1])+clogm(aGamma(1n,log(λy))(log(λy))nlogn(λy)+aGamma(1n,log(λK[1]))(log(λK[1]))nlogn(λK[1])+bλxb))bdK[1])}}

Maple

restart; 
pde := a*diff(w(x,y),x)+b*ln(lambda*y)^n*diff(w(x,y),y) =  (c*ln(lambda*x)^m+s*ln(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(a(ln(λy)ndy)b+x)ey(cln((a(ln(λy)ndy)b+x+aln(_bλ)nbd_b)λ)m+sln(_bβ)k)ln(_bλ)nbd_b

____________________________________________________________________________________

6.4.13.5 [1106] Problem 5

problem number 1106

Added Feb. 25, 2019.

Problem Chapter 4.5.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

ln(βy)wx+aln(λx)wy=bwln(βy)

Mathematica

ClearAll["Global`*"]; 
pde =  Log[beta*y]*D[w[x, y], x] + a*Log[lambda*x]*D[w[x, y], y] == b*w[x, y]*Log[beta*y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)ebxc1(y(log(βyeaxyxaxyλaxy)1))}}

Maple

restart; 
pde := ln(beta*y)*diff(w(x,y),x)+a*ln(lambda*x)*diff(w(x,y),y) =  b*w(x,y)*ln(beta*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(axln(λx)+ax+yln(βy)ya)ebx

____________________________________________________________________________________

6.4.13.6 [1107] Problem 6

problem number 1107

Added Feb. 25, 2019.

Problem Chapter 4.5.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

aln(λx)nwx+bln(βy)kwy=cln(γx)mw

Mathematica

ClearAll["Global`*"]; 
pde =  a*Log[lambda*x]^n*D[w[x, y], x] + b*Log[beta*y]^k*D[w[x, y], y] == c*Log[gamma*x]^m*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := a*ln(lambda*x)^n*diff(w(x,y),x)+b*ln(beta*y)^k*diff(w(x,y),y) = c*log(gamma*x)^m*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1((ln(λx)ndx)+aln(βy)kbdy)ec(ln(x)+ln(γ))mln(λx)nadx

____________________________________________________________________________________