Added January 20, 2018.
Beam PDE with zero initial velocity. Solve
And initial conditions
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x, t], {t, 2}] + D[u[x, t], {x, 4}] == 0; bc = {u[0, t] == -12*t^2, u[1, t] == 1 - 12*t^2, Derivative[2, 0][u][0, t] == 0, Derivative[2, 0][u][1, t] == 12}; ic = {u[x, 0] == x^4, Derivative[0, 1][u][x, 0] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], x, t], 60*10]];
Maple ✓
restart; interface(showassumed=0); pde := diff(u(x,t),t$2)+diff(u(x,t),x$4)=0; bc := u(0,t)=-12*t^2, u(1,t)=1-12*t^2,D[1,1](u)(0,t)=0, D[1,1](u)(1,t)=12; ic := u(x,0)=x^4,D[2](u)(x,0)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],u(x,t),HINT=`+`)),output='realtime'));