Added June 3, 2019.
Problem 3.5(e) nonlinear pde’s by Lokenath Debnath, 3rd edition.
Solve for \(u(x,y)\) \[ y u_x+x u_y=x y \] with \(u(0,y)=e^{-y^2},u(x,0)=e^{-x^2}\) for \(x>0,y>0\)
Mathematica ✗
ClearAll["Global`*"]; pde = y*D[u[x, y], x] + x*D[u[x,y],y] == x*y; ic = {u[0,y]==Exp[-y^2],u[x,0]==Exp[-x^2]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde,ic} ,u[x, y], {x, y},Assumptions->{x>0,y>0}], 60*10]];
Failed
Maple ✗
restart; pde :=y*diff(u(x,y),x)+ x*diff(u(x,y),y)= x*y; ic := u(0,y)=exp(-y^2),u(x,0)=exp(-x^2); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],u(x,y)) assuming x>0,y>0),output='realtime'));
sol=()
____________________________________________________________________________________