Added March 10, 2019.
Problem Chapter 4.8.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = f(x) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == f[x]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) \exp \left (\int _1^x\frac {f(K[1])}{a}dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) =f(x)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{\int \!{\frac {f \left ( x \right ) }{a}}\,{\rm d}x}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + a w_y = f(x) y w \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*D[w[x, y], y] == f[x]*y*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1(y-a x) \exp \left (\int _1^xf(K[1]) (y+a (K[1]-x))dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+ a*diff(w(x,y),y) =f(x)*y*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -ax+y \right ) {{\rm e}^{\int ^{x}\!- \left ( \left ( x-{\it \_a} \right ) a-y \right ) f \left ( {\it \_a} \right ) {d{\it \_a}}}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + a w_y = (f(x) y^2+g(x) y+h(x)) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*D[w[x, y], y] == (f[x]*y^2 + g[x]*y + h[x])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1(y-a x) \exp \left (\int _1^x\left (f(K[1]) (y+a (K[1]-x))^2+g(K[1]) (y+a (K[1]-x))+h(K[1])\right )dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+ a*diff(w(x,y),y) =(f(x)*y^2+g(x)*y+h(x))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -ax+y \right ) {{\rm e}^{\int ^{x}\! \left ( \left ( x-{\it \_a} \right ) a-y \right ) ^{2}f \left ( {\it \_a} \right ) + \left ( \left ( {\it \_a}-x \right ) a+y \right ) g \left ( {\it \_a} \right ) +h \left ( {\it \_a} \right ) {d{\it \_a}}}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + a w_y = f(x) y^k w \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*D[w[x, y], y] == f[x]*y^k*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1(y-a x) \exp \left (\int _1^xf(K[1]) (y+a (K[1]-x))^kdK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+ a*diff(w(x,y),y) =f(x)*y^k*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -ax+y \right ) {{\rm e}^{\int ^{x}\! \left ( \left ( {\it \_a}-x \right ) a+y \right ) ^{k}f \left ( {\it \_a} \right ) {d{\it \_a}}}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + a w_y = f(x) e^{\lambda y} w \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*D[w[x, y], y] == f[x]*Exp[lambda*y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1(y-a x) \exp \left (\int _1^xe^{\lambda (y+a (K[1]-x))} f(K[1])dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+ a*diff(w(x,y),y) =f(x)*exp(lambda*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -ax+y \right ) {{\rm e}^{\int ^{x}\!f \left ( {\it \_a} \right ) {{\rm e}^{- \left ( \left ( x-{\it \_a} \right ) a-y \right ) \lambda }}{d{\it \_a}}}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + (a y + f(x)) w_y = g(x) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*y + f[x])*D[w[x, y], y] == g[x]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \exp \left (\int _1^xg(K[2])dK[2]\right ) c_1\left (y e^{-a x}-\int _1^xe^{-a K[1]} f(K[1])dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+ (a*y+f(x))*diff(w(x,y),y) =g(x)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!f \left ( x \right ) {{\rm e}^{-ax}}\,{\rm d}x+y{{\rm e}^{-ax}} \right ) {{\rm e}^{\int \!g \left ( x \right ) \,{\rm d}x}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + (a y + f(x)) w_y = g(x) y^k w \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*y + f[x])*D[w[x, y], y] == g[x]*y^k*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y e^{-a x}-\int _1^xe^{-a K[1]} f(K[1])dK[1]\right ) \exp \left (\int _1^xg(K[2]) \left (e^{a K[2]} \left (e^{-a x} y-\int _1^xe^{-a K[1]} f(K[1])dK[1]+\int _1^{K[2]}e^{-a K[1]} f(K[1])dK[1]\right )\right ){}^kdK[2]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+ (a*y+f(x))*diff(w(x,y),y) =g(x)*y^k*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!f \left ( x \right ) {{\rm e}^{-ax}}\,{\rm d}x+y{{\rm e}^{-ax}} \right ) {{\rm e}^{\int ^{x}\! \left ( \left ( \int \!f \left ( {\it \_b} \right ) {{\rm e}^{-a{\it \_b}}}\,{\rm d}{\it \_b}-\int \!f \left ( x \right ) {{\rm e}^{-ax}}\,{\rm d}x+y{{\rm e}^{-ax}} \right ) {{\rm e}^{a{\it \_b}}} \right ) ^{k}g \left ( {\it \_b} \right ) {d{\it \_b}}}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f(x) w_x + y^k w_y = g(x) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = f[x]*D[w[x, y], x] + y^k*D[w[x, y], y] == g[x]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \exp \left (\int _1^x\frac {g(K[2])}{f(K[2])}dK[2]\right ) c_1\left (-\int _1^x\frac {1}{f(K[1])}dK[1]-\frac {y^{1-k}}{k-1}\right )\right \}\right \}\]
Maple ✓
restart; pde := f(x)*diff(w(x,y),x)+ y^k*diff(w(x,y),y) =g(x)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {{y}^{k} \left ( k-1 \right ) \int \! \left ( f \left ( x \right ) \right ) ^{-1}\,{\rm d}x+y}{{y}^{k}}} \right ) {{\rm e}^{\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f(x) w_x + (y+a) w_y = (b y+c) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = f[x]*D[w[x, y], x] + (y + a)*D[w[x, y], y] == (b*y + c)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y \exp \left (-\int _1^x\frac {1}{f(K[1])}dK[1]\right )-\int _1^x\frac {a \exp \left (-\int _1^{K[2]}\frac {1}{f(K[1])}dK[1]\right )}{f(K[2])}dK[2]\right ) \exp \left (\int _1^x\frac {c+b \exp \left (\int _1^{K[3]}\frac {1}{f(K[1])}dK[1]\right ) \left (\exp \left (-\int _1^x\frac {1}{f(K[1])}dK[1]\right ) y-\int _1^x\frac {a \exp \left (-\int _1^{K[2]}\frac {1}{f(K[1])}dK[1]\right )}{f(K[2])}dK[2]+\int _1^{K[3]}\frac {a \exp \left (-\int _1^{K[2]}\frac {1}{f(K[1])}dK[1]\right )}{f(K[2])}dK[2]\right )}{f(K[3])}dK[3]\right )\right \}\right \}\]
Maple ✓
restart; pde := f(x)*diff(w(x,y),x)+ (y+a)*diff(w(x,y),y) =(b*y+c)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( \left ( y+a \right ) {{\rm e}^{-\int \! \left ( f \left ( x \right ) \right ) ^{-1}\,{\rm d}x}} \right ) {{\rm e}^{ \left ( -ab+c \right ) \int \! \left ( f \left ( x \right ) \right ) ^{-1}\,{\rm d}x+ \left ( y+a \right ) b}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.10, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f(x) w_x + (y+a x) w_y = g(x) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = f[x]*D[w[x, y], x] + (y + a*x)*D[w[x, y], y] == g[x]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \exp \left (\int _1^x\frac {g(K[3])}{f(K[3])}dK[3]\right ) c_1\left (y \exp \left (-\int _1^x\frac {1}{f(K[1])}dK[1]\right )-\int _1^x\frac {a \exp \left (-\int _1^{K[2]}\frac {1}{f(K[1])}dK[1]\right ) K[2]}{f(K[2])}dK[2]\right )\right \}\right \}\]
Maple ✓
restart; pde := f(x)*diff(w(x,y),x)+ (y+a*x)*diff(w(x,y),y) =g(x)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -a\int \!{\frac {x{{\rm e}^{-\int \! \left ( f \left ( x \right ) \right ) ^{-1}\,{\rm d}x}}}{f \left ( x \right ) }}\,{\rm d}x+y{{\rm e}^{-\int \! \left ( f \left ( x \right ) \right ) ^{-1}\,{\rm d}x}} \right ) {{\rm e}^{\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.11, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f(x) w_x + (g_1(x) y+g_0(x)) w_y = \left ( h_2(x) y^2+ h_1(x)y + h_0(x) \right ) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = f[x]*D[w[x, y], x] + (g1[x]*y + g0[x])*D[w[x, y], y] == (h2[x]*y^2 + h1[x]*y + h0[x])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y \exp \left (-\int _1^x\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right )-\int _1^x\frac {\exp \left (-\int _1^{K[2]}\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right ) \text {g0}(K[2])}{f(K[2])}dK[2]\right ) \exp \left (\int _1^x\frac {\exp \left (2 \int _1^{K[3]}\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right ) \text {h2}(K[3]) \left (\exp \left (-\int _1^x\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right ) y-\int _1^x\frac {\exp \left (-\int _1^{K[2]}\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right ) \text {g0}(K[2])}{f(K[2])}dK[2]+\int _1^{K[3]}\frac {\exp \left (-\int _1^{K[2]}\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right ) \text {g0}(K[2])}{f(K[2])}dK[2]\right ){}^2+\exp \left (\int _1^{K[3]}\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right ) \text {h1}(K[3]) \left (\exp \left (-\int _1^x\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right ) y-\int _1^x\frac {\exp \left (-\int _1^{K[2]}\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right ) \text {g0}(K[2])}{f(K[2])}dK[2]+\int _1^{K[3]}\frac {\exp \left (-\int _1^{K[2]}\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right ) \text {g0}(K[2])}{f(K[2])}dK[2]\right )+\text {h0}(K[3])}{f(K[3])}dK[3]\right )\right \}\right \}\]
Maple ✓
restart; pde := f(x)*diff(w(x,y),x)+ (g1(x)*y+g0(x))*diff(w(x,y),y) =(h2(x)*y^2+h1(x)*y+h0(x))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!{\frac {{\it g0} \left ( x \right ) }{f \left ( x \right ) }{{\rm e}^{-\int \!{\frac {{\it g1} \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}}}\,{\rm d}x+y{{\rm e}^{-\int \!{\frac {{\it g1} \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{f \left ( {\it \_f} \right ) } \left ( {\it h2} \left ( {\it \_f} \right ) \left ( \int \!{\frac {{\it g0} \left ( {\it \_f} \right ) }{f \left ( {\it \_f} \right ) }{{\rm e}^{-\int \!{\frac {{\it g1} \left ( {\it \_f} \right ) }{f \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}}}}\,{\rm d}{\it \_f} \right ) ^{2}{{\rm e}^{2\,\int \!{\frac {{\it g1} \left ( {\it \_f} \right ) }{f \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}}}+2\,{\it h2} \left ( {\it \_f} \right ) \int \!{\frac {{\it g0} \left ( {\it \_f} \right ) }{f \left ( {\it \_f} \right ) }{{\rm e}^{-\int \!{\frac {{\it g1} \left ( {\it \_f} \right ) }{f \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}}}}\,{\rm d}{\it \_f}{{\rm e}^{2\,\int \!{\frac {{\it g1} \left ( {\it \_f} \right ) }{f \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}}} \left ( -\int \!{\frac {{\it g0} \left ( x \right ) }{f \left ( x \right ) }{{\rm e}^{-\int \!{\frac {{\it g1} \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}}}\,{\rm d}x+y{{\rm e}^{-\int \!{\frac {{\it g1} \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \right ) +{\it h2} \left ( {\it \_f} \right ) {{\rm e}^{2\,\int \!{\frac {{\it g1} \left ( {\it \_f} \right ) }{f \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}}} \left ( -\int \!{\frac {{\it g0} \left ( x \right ) }{f \left ( x \right ) }{{\rm e}^{-\int \!{\frac {{\it g1} \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}}}\,{\rm d}x+y{{\rm e}^{-\int \!{\frac {{\it g1} \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \right ) ^{2}+{{\rm e}^{\int \!{\frac {{\it g1} \left ( {\it \_f} \right ) }{f \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}}}{\it h1} \left ( {\it \_f} \right ) \int \!{\frac {{\it g0} \left ( {\it \_f} \right ) }{f \left ( {\it \_f} \right ) }{{\rm e}^{-\int \!{\frac {{\it g1} \left ( {\it \_f} \right ) }{f \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}}}}\,{\rm d}{\it \_f}+{{\rm e}^{\int \!{\frac {{\it g1} \left ( {\it \_f} \right ) }{f \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}}}{\it h1} \left ( {\it \_f} \right ) \left ( -\int \!{\frac {{\it g0} \left ( x \right ) }{f \left ( x \right ) }{{\rm e}^{-\int \!{\frac {{\it g1} \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}}}\,{\rm d}x+y{{\rm e}^{-\int \!{\frac {{\it g1} \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \right ) +{\it h0} \left ( {\it \_f} \right ) \right ) }{d{\it \_f}}}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.12, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f(x) w_x + (g_1(x) y+g_2(x) y^k) w_y = h(x) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = f[x]*D[w[x, y], x] + (g1[x]*y + g2[x]*y^k)*D[w[x, y], y] == h[x]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \exp \left (\int _1^x\frac {h(K[3])}{f(K[3])}dK[3]\right ) c_1\left ((k-1) \int _1^x\frac {\exp \left ((k-1) \int _1^{K[2]}\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right ) \text {g2}(K[2])}{f(K[2])}dK[2]+y^{1-k} \exp \left ((k-1) \int _1^x\frac {\text {g1}(K[1])}{f(K[1])}dK[1]\right )\right )\right \}\right \}\]
Maple ✓
restart; pde := f(x)*diff(w(x,y),x)+ (g1(x)*y+g2(x)*y^k)*diff(w(x,y),y) =h(x)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); sol := simplify(sol);
\[w \left ( x,y \right ) ={\it \_F1} \left ( \left ( k-1 \right ) \int \!{\frac {{\it g2} \left ( x \right ) }{f \left ( x \right ) }{{\rm e}^{ \left ( k-1 \right ) \int \!{\frac {{\it g1} \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}}}\,{\rm d}x+{y}^{1-k}{{\rm e}^{ \left ( k-1 \right ) \int \!{\frac {{\it g1} \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \right ) {{\rm e}^{\int \!{\frac {h \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.13, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f(x) w_x + (g_1(x)+g_2(x) e^{\lambda y}) w_y = h(x) w \]
Mathematica ✗
ClearAll["Global`*"]; pde = f[x]*D[w[x, y], x] + (g1[x]*y + g2[x]*Exp[lambda*y])*D[w[x, y], y] == h[x]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := f(x)*diff(w(x,y),x)+ (g1(x)*y+g2(x)*exp(lambda*y))*diff(w(x,y),y) =h(x)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.14, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f(x) y^k w_x + g(x) w_y = h(x) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = f[x]*y^k*D[w[x, y], x] + g[x]*D[w[x, y], y] == h[x]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {y^{k+1}}{k+1}-\int _1^x\frac {g(K[1])}{f(K[1])}dK[1]\right ) \exp \left (\int _1^x\frac {h(K[2]) \left (\left (y^{k+1}-(k+1) \int _1^x\frac {g(K[1])}{f(K[1])}dK[1]+(k+1) \int _1^{K[2]}\frac {g(K[1])}{f(K[1])}dK[1]\right ){}^{\frac {1}{k+1}}\right ){}^{-k}}{f(K[2])}dK[2]\right )\right \}\right \}\]
Maple ✓
restart; pde := f(x)*y^k*diff(w(x,y),x)+ g(x)*diff(w(x,y),y) =h(x)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( \left ( -1-k \right ) \int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x+{y}^{k}y \right ) {{\rm e}^{\int ^{x}\!{\frac {h \left ( {\it \_b} \right ) }{f \left ( {\it \_b} \right ) } \left ( \left ( \left ( k+1 \right ) \int \!{\frac {g \left ( {\it \_b} \right ) }{f \left ( {\it \_b} \right ) }}\,{\rm d}{\it \_b}+ \left ( -1-k \right ) \int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x+{y}^{k}y \right ) ^{ \left ( k+1 \right ) ^{-1}} \right ) ^{-k}}{d{\it \_b}}}}\]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.1.15, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f(x) e^{\lambda y} w_x + g(x) w_y = h(x) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = f[x]*Exp[lambda*y]*D[w[x, y], x] + g[x]*D[w[x, y], y] == h[x]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {e^{\lambda y}}{\lambda }-\int _1^x\frac {g(K[1])}{f(K[1])}dK[1]\right ) \exp \left (\int _1^x\frac {h(K[2])}{f(K[2]) \left (-\lambda \int _1^x\frac {g(K[1])}{f(K[1])}dK[1]+e^{\lambda y}+\lambda \int _1^{K[2]}\frac {g(K[1])}{f(K[1])}dK[1]\right )}dK[2]\right )\right \}\right \}\]
Maple ✓
restart; pde := f(x)*exp(lambda*y)*diff(w(x,y),x)+ g(x)*diff(w(x,y),y) =h(x)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{\lambda } \left ( {{\rm e}^{y\lambda }}-\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x\lambda \right ) } \right ) {{\rm e}^{\int ^{x}\!{\frac {h \left ( {\it \_b} \right ) }{f \left ( {\it \_b} \right ) } \left ( -\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x\lambda +\lambda \,\int \!{\frac {g \left ( {\it \_b} \right ) }{f \left ( {\it \_b} \right ) }}\,{\rm d}{\it \_b}+{{\rm e}^{y\lambda }} \right ) ^{-1}}{d{\it \_b}}}}\]
____________________________________________________________________________________