Added Feb. 17, 2019.
Problem Chapter 4.2.1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y),x) +b*diff(w(x,y),y) = c*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + y*D[w[x, y], y] == b*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y),x) +y*diff(w(x,y),y) = b*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y),x) +y*diff(w(x,y),y) = a*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = x*(D[w[x, y], x] - b*D[w[x, y], y]) == c*y*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := x*(diff(w(x,y),x) -b*diff(w(x,y),y)) = c*y*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y),x) +y*diff(w(x,y),y) = a*x*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = (x - a)*D[w[x, y], x] + (y - b)*D[w[x, y], y] == w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := (x-a)*diff(w(x,y),x) +(y-b)*diff(w(x,y),y) = w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.1.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = (y + a*x)*D[w[x, y], x] + (y - a*x)*D[w[x, y], y] == b*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := (y+a*x)*diff(w(x,y),x) +(y-a*x)*diff(w(x,y),y) = b*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
time expired
____________________________________________________________________________________