6.3.15 5.3

6.3.15.1 [934] Problem 4
6.3.15.2 [935] Problem 5
6.3.15.3 [936] Problem 6

6.3.15.1 [934] Problem 4

problem number 934

Added Feb. 11, 2019.

Problem Chapter 3.5.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(ay+bxn)wy=clnk(λx)

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a*y + b*x^n)*D[w[x, y], y] == c*Log[lambda*x]^k; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(ban1Gamma(n+1,ax)+yeax)+clogk(λx)(log(λx))kGamma(k+1,log(λx))λ}}

Maple

restart; 
pde := diff(w(x,y),x) +  (a*y+b*x^n)*diff(w(x,y),y) =  c*ln(lambda*x)^k; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=c(ln(λx))kdx+_F1((xn(ax)n/2WhittakerM(n/2,n/2+1/2,ax)e1/2axb+ay(n+1))eaxa(n+1)) Result has unresolved integrals

____________________________________________________________________________________

6.3.15.2 [935] Problem 5

problem number 935

Added Feb. 11, 2019.

Problem Chapter 3.5.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

axwx+bywy=xk(nlnx+mlny)

Mathematica

ClearAll["Global`*"]; 
pde =  a*x*D[w[x, y], x] + b*y*D[w[x, y], y] == x^k*(n*Log[x] + m*Log[y]); 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(yxba)+xk(akmlog(y)+aknlog(x)anbm)a2k2}}

Maple

restart; 
pde := a*x*diff(w(x,y),x) +  b*y*diff(w(x,y),y) =  x^k*(n*ln(x)+m*ln(y)); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=1/21k2a2((2ln(x)akn+(m((i(csgn(iy))3i(csgn(iy))2csgn(iyxba)i(csgn(iy))2csgn(ixba)+icsgn(iy)csgn(iyxba)csgn(ixba))π2ln(xba)2ln(yxba))k2n)a2bm)xk+2_F1(yxba)k2a2)

____________________________________________________________________________________

6.3.15.3 [936] Problem 6

problem number 936

Added Feb. 11, 2019.

Problem Chapter 3.5.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

axkwx+bynwy=clnm(λx)+slnl(βy)

Mathematica

ClearAll["Global`*"]; 
pde =  a*x^k*D[w[x, y], x] + b*y^n*D[w[x, y], y] == c*Log[lambda*x]^m + s*Log[beta*y]^l; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)1xK[1]k(slogl(β(a(k1)xkynK[1]ka(k1)xkyK[1]kb(n1)yn(xK[1]kxkK[1]))1n1)+clogm(λK[1]))adK[1]+c1(bx1ka(k1)y1nn1)}}

Maple

restart; 
pde := a*x^k*diff(w(x,y),x) +  b*y^n*diff(w(x,y),y) =  c*ln(lambda*x)+s*ln(beta*y)^l; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=x_aka(cln(_aλ)+s(ln(β(x1kb(n1)+yn+1a(k1)+_a1kb(n1)a(k1))(n1)1))l)d_a+_F1(x1kb(n1)+yn+1a(k1)a(k1))

____________________________________________________________________________________