Added Feb. 11, 2019.
Problem Chapter 3.5.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*y + b*x^n)*D[w[x, y], y] == c*Log[lambda*x]^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x) + (a*y+b*x^n)*diff(w(x,y),y) = c*ln(lambda*x)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.5.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*x*D[w[x, y], x] + b*y*D[w[x, y], y] == x^k*(n*Log[x] + m*Log[y]); sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*x*diff(w(x,y),x) + b*y*diff(w(x,y),y) = x^k*(n*ln(x)+m*ln(y)); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.5.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^k*D[w[x, y], x] + b*y^n*D[w[x, y], y] == c*Log[lambda*x]^m + s*Log[beta*y]^l; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*x^k*diff(w(x,y),x) + b*y^n*diff(w(x,y),y) = c*ln(lambda*x)+s*ln(beta*y)^l; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________