5.3.1 Spherical coordinates

5.3.1.1 [415] No I.C. no B.C.

5.3.1.1 [415] No I.C. no B.C.

problem number 415

Added Jan 10, 2019.

Solve for u(r,θ,ϕ,t) the wave PDE in 3D utt=c22u Using the Physics convention for Spherical coordinates system.

Mathematica

ClearAll["Global`*"]; 
lap = Laplacian[u[r, theta, phi, t], {r, theta, phi}, "Spherical"]; 
pde =  D[u[r, theta, phi, t], {t, 2}] == c^2*lap; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, u[r, theta, phi, t], {r, theta, phi, t}, Assumptions -> {0 < theta < Pi}], 60*10]];
 

Failed

Maple

restart; 
lap:=VectorCalculus:-Laplacian( u(r,theta,phi,t), 'spherical'[r,theta,phi] ); 
pde := diff(u(r,theta,phi,t),t$2)= c^2* lap; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(r,theta,phi,t),'build') assuming 0<theta,theta<Pi),output='realtime')); 
sol := simplify(sol);
 

u(r,θ,ϕ,t)=2e1/2(π2ϕ)_c3_c4t(sin(θ))i_c3(e2_c4t_C7+_C8)(e2_c3ϕ_C5+_C6)r(BesselJ(1/2c2+4_c1c2,_c4rc)_C1+BesselY(1/2c2+4_c1c2,_c4rc)_C2)(hypergeom([1/42_c3c+c2+4_c1+3cc,1/42_c3c+c2+4_c13cc],[3/2],1/2cos(2θ)+1/2)cos(θ)_C3+hypergeom([1/42_c3c+c2+4_c1cc,1/42_c3c+c2+4_c1+cc],[1/2],1/2cos(2θ)+1/2)_C4)

____________________________________________________________________________________