2.15.6 Boussinesq type uttuxx2α(uux)xβuxxtt=0

problem number 116

Added December 27, 2018.

Taken from https://en.wikipedia.org/wiki/List_of_nonlinear_partial_differential_equations

Boussinesq type PDE. Solve for u(x,t) uttuxx2α(uux)xβuxxtt=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], {t, 2}] - D[u[x, t], {x, 2}] - D[u[x, t], {x, 4}] - 3*D[u[x, t]^2, {x, 2}] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, u[x, t], {x, t}], 60*10]];
 

{{u(x,t)16(12c12tanh2(c2t+c1x+c3)+8c12+c22c121)}}

Maple

restart; 
pde := diff(u(x,t),t$2)-diff(u(x,t),x$2)-2*alpha*diff( (u(x,t)*diff(u(x,t),x)) ,x) - beta*diff(u(x,t),x,x,t,t)=0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(x,t))),output='realtime'));
 

u(x,t)=1/212_C32β(tanh(_C2x+_C3t+_C1))2_C22+(8_C32β1)_C22+_C32α_C22

____________________________________________________________________________________