____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.7.3.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c \arctan \frac {x}{\lambda }+ k \arctan \frac {y}{\beta } \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*ArcTan[x/lambda] + k*ArcTan[y/beta]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \left \{\left \{w(x,y)\to \frac {-a \beta k \log \left (a^2 \beta ^2+(a y-b x)^2+2 b x (a y-b x)+b^2 x^2\right )+2 a b c_1\left (\frac {a y-b x}{a}\right )+2 a k y \tan ^{-1}\left (\frac {y}{\beta }\right )-b c \lambda \log \left (\lambda ^2+x^2\right )+2 b c x \tan ^{-1}\left (\frac {x}{\lambda }\right )}{2 a b}\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; pde := a*diff(w(x,y),x) + b*diff(w(x,y),y) = c*arctan(x/lambda)+k*arctan(y/beta); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[ w \left ( x,y \right ) ={\frac {cx}{a}\arctan \left ( {\frac {x}{\lambda }} \right ) }+{\frac {ky}{b}\arctan \left ( {\frac {bx}{a\beta }}+{\frac {ya-bx}{a\beta }} \right ) }+1/2\,{\frac {1}{ab} \left ( -k\beta \,\ln \left ( \left ( {\frac {bx}{a\beta }}+{\frac {ya-bx}{a\beta }} \right ) ^{2}+1 \right ) a-\lambda \,c\ln \left ( {\frac {{x}^{2}}{{\lambda }^{2}}}+1 \right ) b+2\,{\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) ba \right ) } \]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.7.3.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c \arctan (\lambda x+\beta y) \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*ArcTan[lambda*x + beta*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; sol[[2]] = Simplify[sol[[2]]];
\[ \left \{\left \{w(x,y)\to \frac {c \left (2 (\beta y+\lambda x) \tan ^{-1}(\beta y+\lambda x)-\log \left (a^2 \left (\beta ^2 y^2+2 \beta \lambda x y+\lambda ^2 x^2+1\right )\right )\right )}{2 (a \lambda +b \beta )}+c_1\left (y-\frac {b x}{a}\right )\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; pde := a*diff(w(x,y),x) + b*diff(w(x,y),y) = c *arctan(lambda*x+beta*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime')); sol:=simplify(sol);
\[ w \left ( x,y \right ) ={\frac {1}{2\,a\lambda +2\,b\beta } \left ( -c\ln \left ( {\beta }^{2}{y}^{2}+2\,\beta \,\lambda \,xy+{\lambda }^{2}{x}^{2}+1 \right ) + \left ( 2\,a\lambda +2\,b\beta \right ) {\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) +2\,\arctan \left ( \beta \,y+\lambda \,x \right ) c \left ( \beta \,y+\lambda \,x \right ) \right ) } \]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.7.3.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + y w_y = a x \arctan (\lambda x+\beta y) \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*ArcTan[lambda*x + beta*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; sol[[2]] = Simplify[sol[[2]]];
\[ \left \{\left \{w(x,y)\to -\frac {a x \log \left (\beta ^2 y^2+2 \beta \lambda x y+\lambda ^2 x^2+1\right )}{2 (\beta y+\lambda x)}+a x \tan ^{-1}(\beta y+\lambda x)+c_1\left (\frac {y}{x}\right )\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; pde := x*diff(w(x,y),x) + y*diff(w(x,y),y) = a*x *arctan(lambda*x+beta*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime')); sol:=simplify(sol);
\[ w \left ( x,y \right ) ={\frac {1}{2\,\beta \,y+2\,\lambda \,x} \left ( -\ln \left ( {\beta }^{2}{y}^{2}+2\,\beta \,\lambda \,xy+{\lambda }^{2}{x}^{2}+1 \right ) ax+2\, \left ( \beta \,y+\lambda \,x \right ) \left ( ax\arctan \left ( \beta \,y+\lambda \,x \right ) +{\it \_F1} \left ( {\frac {y}{x}} \right ) \right ) \right ) } \]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.7.3.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \arctan ^n(\lambda x) w_y = c \arctan ^m(\mu x)+s \arctan ^k(\beta y) \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; pde = a*D[w[x, y], x] + b*ArcTan[lambda*x]^n*D[w[x, y], y] == a*ArcTan[mu*x]^m + ArcTan[beta*y]^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \text {\$Aborted} \] Timed out
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; pde := a*diff(w(x,y),x) + b*arctan(lambda*x)*diff(w(x,y),y) = a*arctan(mu*x)^m+arctan(beta*y)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[ w \left ( x,y \right ) =\int ^{x}\! \left ( \arctan \left ( \mu \,{\it \_a} \right ) \right ) ^{m}+{\frac {1}{a} \left ( \arctan \left ( {\frac {\beta \,b{\it \_a}\,\arctan \left ( \lambda \,{\it \_a} \right ) }{a}}+1/2\,{\frac { \left ( -2\,bx\arctan \left ( \lambda \,x \right ) \lambda +2\,y\lambda \,a+b\ln \left ( {\lambda }^{2}{x}^{2}+1 \right ) \right ) \beta }{a\lambda }}-1/2\,{\frac {b\beta \,\ln \left ( {{\it \_a}}^{2}{\lambda }^{2}+1 \right ) }{a\lambda }} \right ) \right ) ^{k}}{d{\it \_a}}+{\it \_F1} \left ( 1/2\,{\frac {-2\,bx\arctan \left ( \lambda \,x \right ) \lambda +2\,y\lambda \,a+b\ln \left ( {\lambda }^{2}{x}^{2}+1 \right ) }{a\lambda }} \right ) \]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.7.3.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \arctan ^n(\lambda y) w_y = c \arctan ^m(\mu x)+s \arctan ^k(\beta y) \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; pde = a*D[w[x, y], x] + b*ArcTan[lambda*y]^n*D[w[x, y], y] == a*ArcTan[mu*x]^m + ArcTan[beta*y]^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \text {\$Aborted} \] Timed out
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; pde := a*diff(w(x,y),x) + b*arctan(lambda*y)*diff(w(x,y),y) = a*arctan(mu*x)^m+arctan(beta*y)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[ w \left ( x,y \right ) =\int ^{y}\!{\frac {a}{b\arctan \left ( {\it \_b}\,\lambda \right ) } \left ( \arctan \left ( {\frac {\mu \,a\int \! \left ( \arctan \left ( {\it \_b}\,\lambda \right ) \right ) ^{-1}\,{\rm d}{\it \_b}}{b}}+\mu \, \left ( -\int \!{\frac {a}{b\arctan \left ( y\lambda \right ) }}\,{\rm d}y+x \right ) \right ) \right ) ^{m}}+{\frac { \left ( \arctan \left ( \beta \,{\it \_b} \right ) \right ) ^{k}}{b\arctan \left ( {\it \_b}\,\lambda \right ) }}{d{\it \_b}}+{\it \_F1} \left ( -\int \!{\frac {a}{b\arctan \left ( y\lambda \right ) }}\,{\rm d}y+x \right ) \]