____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.7.1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c \arcsin \frac {x}{\lambda }+ k \arcsin \frac {y}{\beta } \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*ArcSin[x/lambda] + k*ArcSin[y/beta]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; sol[[2]] = Simplify[sol[[2]]];
\[ \left \{\left \{w(x,y)\to \frac {-\frac {i b k x \sqrt {a^2 \left (\beta ^2-y^2\right )} \log \left (2 \left (\sqrt {a^2 \left (\beta ^2-y^2\right )}-i a y\right )\right )}{\sqrt {1-\frac {y^2}{\beta ^2}}}+a^2 b \beta c_1\left (y-\frac {b x}{a}\right )-\frac {a^2 k y^2}{\sqrt {1-\frac {y^2}{\beta ^2}}}+\frac {a^2 \beta ^2 k}{\sqrt {1-\frac {y^2}{\beta ^2}}}+\frac {i a k y \sqrt {a^2 \left (\beta ^2-y^2\right )} \log \left (2 \left (\sqrt {a^2 \left (\beta ^2-y^2\right )}-i a y\right )\right )}{\sqrt {1-\frac {y^2}{\beta ^2}}}+a b \beta c \lambda \sqrt {1-\frac {x^2}{\lambda ^2}}+a b \beta c x \sin ^{-1}\left (\frac {x}{\lambda }\right )+a b \beta k x \sin ^{-1}\left (\frac {y}{\beta }\right )}{a^2 b \beta }\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; pde := a*diff(w(x,y),x) + b*diff(w(x,y),y) = c*arcsin(x/lambda)+k*arcsin(y/beta); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime')); sol:=simplify(sol);
\[ w \left ( x,y \right ) ={\frac {1}{ab} \left ( \arcsin \left ( {\frac {y}{\beta }} \right ) kya+\sqrt {{\frac {{\beta }^{2}-{y}^{2}}{{\beta }^{2}}}}a\beta \,k+\arcsin \left ( {\frac {x}{\lambda }} \right ) bcx+\sqrt {{\frac {{\lambda }^{2}-{x}^{2}}{{\lambda }^{2}}}}bc\lambda +{\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) ba \right ) } \]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.7.1.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c \arcsin (\lambda x+\beta y) \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*ArcSin[lambda*x + beta*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; sol[[2]] = Simplify[sol[[2]]];
\[ \left \{\left \{w(x,y)\to \frac {c \left (\sqrt {-\beta ^2 y^2-2 \beta \lambda x y-\lambda ^2 x^2+1}+(\beta y+\lambda x) \sin ^{-1}(\beta y+\lambda x)\right )}{a \lambda +b \beta }+c_1\left (y-\frac {b x}{a}\right )\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; pde := a*diff(w(x,y),x) + b*diff(w(x,y),y) = c *arcsin(lambda*x+beta*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime')); sol:=simplify(sol);
\[ w \left ( x,y \right ) ={\frac {1}{a\lambda +b\beta } \left ( \sqrt {-{\beta }^{2}{y}^{2}-2\,\beta \,\lambda \,xy-{\lambda }^{2}{x}^{2}+1}c+ \left ( a\lambda +b\beta \right ) {\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) +\arcsin \left ( \beta \,y+\lambda \,x \right ) c \left ( \beta \,y+\lambda \,x \right ) \right ) } \]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.7.1.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + y w_y = a x \arcsin (\lambda x+\beta y) \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*ArcSin[lambda*x + beta*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; sol[[2]] = Simplify[sol[[2]]];
\[ \left \{\left \{w(x,y)\to a x \left (\frac {\sqrt {-\beta ^2 y^2-2 \beta \lambda x y-\lambda ^2 x^2+1}}{\beta y+\lambda x}+\sin ^{-1}(\beta y+\lambda x)\right )+c_1\left (\frac {y}{x}\right )\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; pde := x*diff(w(x,y),x) + y*diff(w(x,y),y) = a*x *arcsin(lambda*x+beta*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[ w \left ( x,y \right ) ={a \left ( x \left ( {\frac {\beta \,y}{x}}+\lambda \right ) \arcsin \left ( x \left ( {\frac {\beta \,y}{x}}+\lambda \right ) \right ) +\sqrt {-{x}^{2} \left ( {\frac {\beta \,y}{x}}+\lambda \right ) ^{2}+1} \right ) \left ( {\frac {\beta \,y}{x}}+\lambda \right ) ^{-1}}+{\it \_F1} \left ( {\frac {y}{x}} \right ) \]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.7.1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \arcsin ^n(\lambda x) w_y = c \arcsin ^m(\mu x)+s \arcsin ^k(\beta y) \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; pde = a*D[w[x, y], x] + b*ArcSin[lambda*x]^n*D[w[x, y], y] == a*ArcSin[mu*x]^m + ArcSin[beta*y]^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \text {\$Aborted} \] Timed out
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; pde := a*diff(w(x,y),x) + b*arcsin(lambda*x)*diff(w(x,y),y) = a*arcsin(mu*x)^m+arcsin(beta*y)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[ w \left ( x,y \right ) =\int ^{x}\! \left ( \arcsin \left ( \mu \,{\it \_a} \right ) \right ) ^{m}+{\frac {1}{a} \left ( \arcsin \left ( {\frac {\beta \,\arcsin \left ( \lambda \,{\it \_a} \right ) b{\it \_a}}{a}}+{\frac { \left ( -\arcsin \left ( \lambda \,x \right ) bx\lambda +y\lambda \,a-\sqrt {-{\lambda }^{2}{x}^{2}+1}b \right ) \beta }{a\lambda }}+{\frac {\beta \,\sqrt {-{{\it \_a}}^{2}{\lambda }^{2}+1}b}{a\lambda }} \right ) \right ) ^{k}}{d{\it \_a}}+{\it \_F1} \left ( {\frac {-\arcsin \left ( \lambda \,x \right ) bx\lambda +y\lambda \,a-\sqrt {-{\lambda }^{2}{x}^{2}+1}b}{a\lambda }} \right ) \]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.7.1.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \arcsin ^n(\lambda y) w_y = c \arcsin ^m(\mu x)+s \arcsin ^k(\beta y) \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; pde = a*D[w[x, y], x] + b*ArcSin[lambda*y]^n*D[w[x, y], y] == a*ArcSin[mu*x]^m + ArcSin[beta*y]^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \text {\$Aborted} \] Timed out
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; pde := a*diff(w(x,y),x) + b*arcsin(lambda*y)*diff(w(x,y),y) = a*arcsin(mu*x)^m+arcsin(beta*y)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[ w \left ( x,y \right ) =\int ^{y}\!{\frac {a}{b\arcsin \left ( \lambda \,{\it \_a} \right ) } \left ( \arcsin \left ( {\frac {\mu \, \left ( bx\lambda -\Ci \left ( \arcsin \left ( y\lambda \right ) \right ) a \right ) }{\lambda \,b}}+{\frac {\mu \,\Ci \left ( \arcsin \left ( \lambda \,{\it \_a} \right ) \right ) a}{\lambda \,b}} \right ) \right ) ^{m}}+{\frac { \left ( \arcsin \left ( \beta \,{\it \_a} \right ) \right ) ^{k}}{b\arcsin \left ( \lambda \,{\it \_a} \right ) }}{d{\it \_a}}+{\it \_F1} \left ( {\frac {bx\lambda -\Ci \left ( \arcsin \left ( y\lambda \right ) \right ) a}{\lambda \,b}} \right ) \]