77 HFOPDE, chapter 3.4.1

77.1 Problem 1
77.2 Problem 2
77.3 Problem 3
77.4 Problem 4
77.5 Problem 5

____________________________________________________________________________________

77.1 Problem 1

problem number 708

Added Feb. 9, 2019.

Problem Chapter 3.4.1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c \sinh (\lambda x)+k\sinh (\mu y) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Sinh[lambda*x] + k*Sinh[mu*y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to \frac {a b \lambda \mu c_1\left (\frac {a y-b x}{a}\right )+a k \lambda \sinh \left (\frac {b \mu x}{a}\right ) \sinh \left (\frac {\mu (a y-b x)}{a}\right )+a k \lambda \cosh \left (\frac {b \mu x}{a}\right ) \cosh \left (\frac {\mu (a y-b x)}{a}\right )+b c \mu \cosh (\lambda x)}{a b \lambda \mu }\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; 
pde :=a*diff(w(x,y),x) +b*diff(w(x,y),y) =c*sinh(lambda*x)+k*sinh(mu*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[ w \left ( x,y \right ) ={\frac {1}{b\mu \,a\lambda } \left ( {\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) b\mu \,a\lambda +\cosh \left ( \lambda \,x \right ) cb\mu +ka\cosh \left ( {\frac { \left ( ya-bx \right ) \mu }{a}}+{\frac {b\mu \,x}{a}} \right ) \lambda \right ) } \]

____________________________________________________________________________________

77.2 Problem 2

problem number 709

Added Feb. 9, 2019.

Problem Chapter 3.4.1.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c \sinh (\lambda x+\mu y) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Sinh[lambda*x + mu*y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to \frac {c \cosh \left (\mu \left (\frac {a y-b x}{a}+\frac {b x}{a}\right )+\lambda x\right )+a \lambda c_1\left (\frac {a y-b x}{a}\right )+b \mu c_1\left (\frac {a y-b x}{a}\right )}{a \lambda +b \mu }\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; 
pde :=a*diff(w(x,y),x) +b*diff(w(x,y),y) =c*sinh(lambda*x+mu*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[ w \left ( x,y \right ) ={\frac {c}{a\lambda +b\mu }\cosh \left ( {\frac { \left ( a\lambda +b\mu \right ) x}{a}}+{\frac { \left ( ya-bx \right ) \mu }{a}} \right ) }+{\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) \]

____________________________________________________________________________________

77.3 Problem 3

problem number 710

Added Feb. 9, 2019.

Problem Chapter 3.4.1.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c x \sinh (\lambda x+\mu y) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*x*Sinh[lambda*x + mu*y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; 
pde :=a*diff(w(x,y),x) +b*diff(w(x,y),y) =c*x*sinh(lambda*x+mu*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[ w \left ( x,y \right ) ={\frac {x}{ \left ( a\lambda +b\mu \right ) ^{2}} \left ( \cosh \left ( {\frac { \left ( a\lambda +b\mu \right ) x}{a}}+{\frac { \left ( ya-bx \right ) \mu }{a}} \right ) ac\lambda +\cosh \left ( {\frac { \left ( a\lambda +b\mu \right ) x}{a}}+{\frac { \left ( ya-bx \right ) \mu }{a}} \right ) bc\mu \right ) }+{\frac {1}{ \left ( a\lambda +b\mu \right ) ^{2}} \left ( {\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {a}^{2}{\lambda }^{2}+2\,{\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) b\mu \,a\lambda +{\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {b}^{2}{\mu }^{2}-\sinh \left ( {\frac { \left ( a\lambda +b\mu \right ) x}{a}}+{\frac { \left ( ya-bx \right ) \mu }{a}} \right ) ac \right ) } \]

____________________________________________________________________________________

77.4 Problem 4

problem number 711

Added Feb. 9, 2019.

Problem Chapter 3.4.1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \sinh ^n(\lambda x) w_y = c \sinh ^m(\mu x)+s \sinh ^k(\beta y) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 pde = a*D[w[x, y], x] + b*Sinh[lambda*x]*D[w[x, y], y] == c*Sinh[mu*x]^m + s*Sinh[beta*y]^k; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Kernel Exception

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; 
pde :=a*diff(w(x,y),x) + b*sinh(lambda*x)*diff(w(x,y),y) =c*sinh(mu*x)^m+s*sinh(beta*y)^k; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[ w \left ( x,y \right ) =\int ^{x}\!{\frac {1}{a} \left ( c \left ( \sinh \left ( \mu \,{\it \_a} \right ) \right ) ^{m}+s \left ( \sinh \left ( {\frac {\beta \, \left ( y\lambda \,a-b\cosh \left ( \lambda \,x \right ) +b\cosh \left ( \lambda \,{\it \_a} \right ) \right ) }{a\lambda }} \right ) \right ) ^{k} \right ) }{d{\it \_a}}+{\it \_F1} \left ( -{\frac {-y\lambda \,a+b\cosh \left ( \lambda \,x \right ) }{a\lambda }} \right ) \]

____________________________________________________________________________________

77.5 Problem 5

problem number 712

Added Feb. 9, 2019.

Problem Chapter 3.4.1.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \sinh ^n(\lambda y) w_y = c \sinh ^m(\mu x)+s \sinh ^k(\beta y) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 pde = a*D[w[x, y], x] + b*Sinh[lambda*y]*D[w[x, y], y] == c*Sinh[mu*x]^m + s*Sinh[beta*y]^k; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v';q:='q';p:='p';l:='l'; 
pde :=a*diff(w(x,y),x) + b*sinh(lambda*y)*diff(w(x,y),y) =c*sinh(mu*x)^m+s*sinh(beta*y)^k; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[ w \left ( x,y \right ) =\int ^{x}\!{\frac {c \left ( \sinh \left ( \mu \,{\it \_a} \right ) \right ) ^{m}}{a}}+{\frac {s}{a} \left ( \sinh \left ( {\frac {\beta }{\lambda }\ln \left ( -\tanh \left ( 1/2\,{\frac {\lambda \,b}{a} \left ( -{\frac {bx\lambda +2\,a\arctanh \left ( {{\rm e}^{y\lambda }} \right ) }{\lambda \,b}}+{\it \_a} \right ) } \right ) \right ) } \right ) \right ) ^{k}}{d{\it \_a}}+{\it \_F1} \left ( -{\frac {bx\lambda +2\,a\arctanh \left ( {{\rm e}^{y\lambda }} \right ) }{\lambda \,b}} \right ) \]