51 HFOPDE, chapter 2.5.2

51.1 problem number 1
51.2 problem number 2
51.3 problem number 3
51.4 problem number 4
51.5 problem number 5
51.6 problem number 6
51.7 problem number 7
51.8 problem number 8
51.9 problem number 9
51.10 problem number 10
51.11 problem number 11
51.12 problem number 12
51.13 problem number 13
51.14 problem number 14
51.15 problem number 15
51.16 problem number 16
51.17 problem number 17
51.18 problem number 18
51.19 problem number 19
51.20 problem number 20
51.21 problem number 21
51.22 problem number 22
51.23 problem number 23

____________________________________________________________________________________

51.1 problem number 1

problem number 425

Added January 14, 2019.

Problem 2.5.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + a x^n \ln ^k(\lambda y) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] + a*x^n*Log[lambda*y]^k*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {\frac {n (-\log (\lambda y))^k \log ^{-k}(\lambda y) \text {Gamma}(1-k,-\log (\lambda y))}{\lambda }+\frac {(-\log (\lambda y))^k \log ^{-k}(\lambda y) \text {Gamma}(1-k,-\log (\lambda y))}{\lambda }-a x^{n+1}}{n+1}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := diff(w(x,y),x)+a*x^n*ln(lambda*y)^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {{x}^{n+1}a-n\int \! \left ( \ln \left ( y\lambda \right ) \right ) ^{-k}\,{\rm d}y-\int \! \left ( \ln \left ( y\lambda \right ) \right ) ^{-k}\,{\rm d}y}{a}} \right ) \]

____________________________________________________________________________________

51.2 problem number 2

problem number 426

Added January 14, 2019.

Problem 2.5.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + a y^n \ln ^k(\lambda x) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] + a*y^n*Log[lambda*x]^k*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (-\frac {y^{-n} (-\log (\lambda x))^{-k} \left (-a y^n \log ^k(\lambda x) \text {Gamma}(k+1,-\log (\lambda x))+a n y^n \log ^k(\lambda x) \text {Gamma}(k+1,-\log (\lambda x))+\lambda y (-\log (\lambda x))^k\right )}{\lambda (n-1)}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := diff(w(x,y),x)+a*y^n*ln(lambda*x)^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {y}{{y}^{n}}}+an\int \! \left ( \ln \left ( \lambda \,x \right ) \right ) ^{k}\,{\rm d}x-a\int \! \left ( \ln \left ( \lambda \,x \right ) \right ) ^{k}\,{\rm d}x \right ) \]

____________________________________________________________________________________

51.3 problem number 3

problem number 427

Added January 14, 2019.

Problem 2.5.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left (y^2+ a \ln (\beta x) y - a b \ln (\beta x) - b^2 \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] + (y^2 + a*Log[beta*x]*y - a*b*Log[beta*x] - b^2)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := diff(w(x,y),x)+(y^2+ a*ln(beta*x)* y - a*b*ln(beta*x) - b^2)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac { \left ( \beta \,x \right ) ^{ax}{{\rm e}^{- \left ( a-2\,b \right ) x}}+y\int \! \left ( \beta \,x \right ) ^{ax}{{\rm e}^{- \left ( a-2\,b \right ) x}}\,{\rm d}x-b\int \! \left ( \beta \,x \right ) ^{ax}{{\rm e}^{- \left ( a-2\,b \right ) x}}\,{\rm d}x}{-b+y}} \right ) \]

____________________________________________________________________________________

51.4 problem number 4

problem number 428

Added January 14, 2019.

Problem 2.5.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left (y^2+ a x \ln ^m(b x) y + a \ln ^m(b x) \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] + (y^2 + a*x*Log[b*x]^m*y + a*Log[b*x]^m)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := diff(w(x,y),x)+(y^2+ a*x*ln(b*x)^m * y + a *ln(b*x)^m)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{yx+1} \left ( yx\int \!{{\rm e}^{\int \!{\frac {a \left ( \ln \left ( bx \right ) \right ) ^{m}{x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x+{{\rm e}^{\int \!{\frac {a \left ( \ln \left ( bx \right ) \right ) ^{m}{x}^{2}-2}{x}}\,{\rm d}x}}x+\int \!{{\rm e}^{\int \!{\frac {a \left ( \ln \left ( bx \right ) \right ) ^{m}{x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x \right ) } \right ) \]

____________________________________________________________________________________

51.5 problem number 5

problem number 429

Added January 14, 2019.

Problem 2.5.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left (a x^n y^2- a b x^{n+1} y \ln (x) + b \ln (x) + b \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] + (a*x^n*y^2 - a*b*x^(n + 1)*y*Log[x] + b*Log[x] + b)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := diff(w(x,y),x)+(a*x^n*y^2- a*b*x^(n+1)*y*ln(x)  + b*ln(x) + b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

51.6 problem number 6

problem number 430

Added January 14, 2019.

Problem 2.5.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x - \left ((n+1)x^n y^2 - a x^{n+1}(\ln x)^m y + a(\ln x)^m \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] - ((n + 1)*x^n*y^2 - a*x^(n + 1)*Log[x]^m*y + a*Log[x]^m)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := diff(w(x,y),x)-((n+1)*x^n*y^2 - a*x^(n+1)*ln(x)^m*y + a*ln(x)^m)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{y{x}^{n+1}-1} \left ( y{x}^{n+1}\int \!{\frac {{{\rm e}^{a\int \!{x}^{n+1} \left ( \ln \left ( x \right ) \right ) ^{m}\,{\rm d}x-2\,n\ln \left ( x \right ) }}{x}^{n}}{{x}^{2}}}\,{\rm d}xn+y{x}^{n+1}\int \!{\frac {{{\rm e}^{a\int \!{x}^{n+1} \left ( \ln \left ( x \right ) \right ) ^{m}\,{\rm d}x-2\,n\ln \left ( x \right ) }}{x}^{n}}{{x}^{2}}}\,{\rm d}x-{{\rm e}^{\int \!{\frac {a{x}^{n+1} \left ( \ln \left ( x \right ) \right ) ^{m}x-2\,n-2}{x}}\,{\rm d}x}}{x}^{n+1}-\int \!{\frac {{{\rm e}^{a\int \!{x}^{n+1} \left ( \ln \left ( x \right ) \right ) ^{m}\,{\rm d}x-2\,n\ln \left ( x \right ) }}{x}^{n}}{{x}^{2}}}\,{\rm d}xn-\int \!{\frac {{{\rm e}^{a\int \!{x}^{n+1} \left ( \ln \left ( x \right ) \right ) ^{m}\,{\rm d}x-2\,n\ln \left ( x \right ) }}{x}^{n}}{{x}^{2}}}\,{\rm d}x \right ) } \right ) \]

____________________________________________________________________________________

51.7 problem number 7

problem number 431

Added January 14, 2019.

Problem 2.5.2.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left (a (\ln x)^n y^2 + b m x^{m-1} - a b^2 x^{2 m} (\ln x)^n \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] + (a*Log[x]^n*y^2 + b*m*x^(m - 1) - a*b^2*x^(2*m)*Log[x]^n)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := diff(w(x,y),x)+(a *ln(x)^n*y^2 + b*m*x^(m-1) - a*b^2*x^(2*m)* ln(x)^n)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

51.8 problem number 8

problem number 432

Added January 14, 2019.

Problem 2.5.2.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left (a (\ln x)^n y^2 - a b x y(\ln x)^{n+1} + b \ln x+ b \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] + (a*Log[x]^n*y^2 - a*b*x*y*Log[x]^(n + 1) + b*Log[x] + b)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := diff(w(x,y),x)+(a*ln(x)^n*y^2 - a*b*x*y*(ln(x))^(n+1) + b*ln(x)+ b )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

51.9 problem number 9

problem number 433

Added January 14, 2019.

Problem 2.5.2.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left (a (\ln x)^k (y - b x^n-c)^3 + b n x^{n-1} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] + (a*Log[x]^k*(y - b*x^n - c)^3 + b*n*x^(n - 1))*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {(-\log (x))^{-k} \left (2 a b^2 x^{2 n} \log ^k(x) \text {Gamma}(k+1,-\log (x))+4 a b c x^n \log ^k(x) \text {Gamma}(k+1,-\log (x))-4 a b y x^n \log ^k(x) \text {Gamma}(k+1,-\log (x))+2 a c^2 \log ^k(x) \text {Gamma}(k+1,-\log (x))-4 a c y \log ^k(x) \text {Gamma}(k+1,-\log (x))+2 a y^2 \log ^k(x) \text {Gamma}(k+1,-\log (x))+(-\log (x))^k\right )}{\left (b x^n+c-y\right )^2}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := diff(w(x,y),x)+(a*(ln(x))^k*(y - b*x^n-c)^3 + b*n*x^(n-1) ) *diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {2\,{x}^{2\,n}a{b}^{2}\int \! \left ( \ln \left ( x \right ) \right ) ^{k}\,{\rm d}x-4\,{x}^{n}yab\int \! \left ( \ln \left ( x \right ) \right ) ^{k}\,{\rm d}x+4\,{x}^{n}abc\int \! \left ( \ln \left ( x \right ) \right ) ^{k}\,{\rm d}x+2\,{y}^{2}a\int \! \left ( \ln \left ( x \right ) \right ) ^{k}\,{\rm d}x-4\,yac\int \! \left ( \ln \left ( x \right ) \right ) ^{k}\,{\rm d}x+2\,a{c}^{2}\int \! \left ( \ln \left ( x \right ) \right ) ^{k}\,{\rm d}x+1}{ \left ( b{x}^{n}+c-y \right ) ^{2}}} \right ) \]

____________________________________________________________________________________

51.10 problem number 10

problem number 434

Added January 14, 2019.

Problem 2.5.2.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left (a (\ln x)^n y^2 + b(\ln x)^m y+ b c (\ln x)^m - a c^2 (\ln x)^n \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] + (a*Log[x]^n*y^2 + b*Log[x]^m*y + b*c*Log[x]^m - a*c^2*Log[x]^n)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := diff(w(x,y),x)+(a*(ln(x))^n*y^2 + b*(ln(x))^m *y+ b*c* (ln(x))^m - a*c^2* (ln(x))^n) *diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {ya\int \! \left ( \ln \left ( x \right ) \right ) ^{n}{{\rm e}^{-2\,ca\int \! \left ( \ln \left ( x \right ) \right ) ^{n}\,{\rm d}x+b\int \! \left ( \ln \left ( x \right ) \right ) ^{m}\,{\rm d}x}}\,{\rm d}x+a\int \! \left ( \ln \left ( x \right ) \right ) ^{n}{{\rm e}^{-2\,ca\int \! \left ( \ln \left ( x \right ) \right ) ^{n}\,{\rm d}x+b\int \! \left ( \ln \left ( x \right ) \right ) ^{m}\,{\rm d}x}}\,{\rm d}xc+{{\rm e}^{-2\,ca\int \! \left ( \ln \left ( x \right ) \right ) ^{n}\,{\rm d}x+b\int \! \left ( \ln \left ( x \right ) \right ) ^{m}\,{\rm d}x}}}{c+y}} \right ) \]

____________________________________________________________________________________

51.11 problem number 11

problem number 435

Added January 14, 2019.

Problem 2.5.2.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left (a y+ b \ln x \right )^2 w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = x*D[w[x, y], x] + (a*y + b*Log[x])^2*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\tan ^{-1}\left (\frac {a^3 y \sqrt {\frac {b}{a^3}}+a^2 b \sqrt {\frac {b}{a^3}} \log (x)}{b}\right )-a^2 \sqrt {\frac {b}{a^3}} \log (x)\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := x*diff(w(x,y),x)+(a*y+ b*ln(x))^2 *diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{a\sqrt {ab}} \left ( -\ln \left ( x \right ) \sqrt {ab}+\arctan \left ( {\frac {a \left ( ya+b\ln \left ( x \right ) \right ) }{\sqrt {ab}}} \right ) \right ) } \right ) \]

____________________________________________________________________________________

51.12 problem number 12

problem number 436

Added January 14, 2019.

Problem 2.5.2.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left (x y^2 - A^2 x (\ln \beta x)^2 + A \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = x*D[w[x, y], x] + (x*y^2 - A^2*x*Log[beta*x]^2 + A)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := x*diff(w(x,y),x)+(x*y^2 - A^2*x*(ln(beta*x))^2 + A) *diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

51.13 problem number 13

problem number 437

Added January 14, 2019.

Problem 2.5.2.13 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left (x y^2 - A^2 x (\ln (\beta x))^{2 k} + k A (\ln (\beta x))^{k-1} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = x*D[w[x, y], x] + (x*y^2 - A^2*x*Log[beta*x]^(2*k) + k*A*Log[beta*x]^(k - 1))*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := x*diff(w(x,y),x)+(x*y^2 - A^2*x*(ln(beta*x))^(2*k) + k*A*(ln(beta*x))^(k-1))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

51.14 problem number 14

problem number 438

Added January 14, 2019.

Problem 2.5.2.14 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left (a x^n y^2 + b - a b^2 x^n (\ln x)^2 \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = x*D[w[x, y], x] + (a*x^n*y^2 + b - a*b^2*x^n*Log[x]^2)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := x*diff(w(x,y),x)+(a*x^n*y^2 + b - a*b^2*x^n*(ln(x))^2)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

51.15 problem number 15

problem number 439

Added January 14, 2019.

Problem 2.5.2.15 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left ( a (\ln (\lambda x))^m y^2 + k y+ a b^2 x^{2 k} (\ln (\lambda x))^m \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = x*D[w[x, y], x] + (a*Log[lambda*x]^m*y^2 + k*y + a*b^2*x^(2*k)*Log[lambda*x]^m)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\tan ^{-1}\left (\frac {y x^{-k}}{\sqrt {b^2}}\right )-\frac {a \sqrt {b^2} x^k (\lambda x)^{-k} \log ^m(\lambda x) (-k \log (\lambda x))^{-m} \text {Gamma}(m+1,-k \log (\lambda x))}{k}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := x*diff(w(x,y),x)+(a*(ln(lambda*x))^m*y^2 + k*y+ a*b^2*x^(2*k)* (ln(lambda*x))^m )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( ab\int \! \left ( \ln \left ( \lambda \,x \right ) \right ) ^{m}{x}^{k-1}\,{\rm d}x-\arctan \left ( {\frac {{x}^{-k}y}{b}} \right ) \right ) \]

____________________________________________________________________________________

51.16 problem number 16

problem number 440

Added January 14, 2019.

Problem 2.5.2.16 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left ( a x^n(y + b \ln x)^2 - b \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = x*D[w[x, y], x] + (a*x^n*(y + b*Log[x])^2 - b)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {a b x^n \log (x)+a y x^n+n}{n (b \log (x)+y)}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := x*diff(w(x,y),x)+(a*x^n*(y + b*ln(x))^2 - b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ab\ln \left ( x \right ) {x}^{n}+a{x}^{n}y+n}{n \left ( y+b\ln \left ( x \right ) \right ) }} \right ) \]

____________________________________________________________________________________

51.17 problem number 17

problem number 441

Added January 14, 2019.

Problem 2.5.2.17 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left ( a x^{2 n} \ln (x) y^2 + (b x^n \ln x - n) y + c \ln x \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = x*D[w[x, y], x] + (a*x^(2*n)*Log[x]*y^2 + (b*x^n*Log[x] - n)*y + c*Log[x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {\left (\sqrt {b^2-4 a c}+2 a y x^n+b\right ) \exp \left (\frac {\sqrt {a} \sqrt {c} x^n \left (\frac {\sqrt {b^2-4 a c}}{\sqrt {a} \sqrt {c}}+\frac {b}{\sqrt {a} \sqrt {c}}\right ) (n \log (x)-1)}{2 n^2}-\frac {\sqrt {a} \sqrt {c} x^n \left (\frac {b}{\sqrt {a} \sqrt {c}}-\frac {\sqrt {b^2-4 a c}}{\sqrt {a} \sqrt {c}}\right ) (n \log (x)-1)}{2 n^2}\right )}{\sqrt {b^2-4 a c}-2 a y x^n-b}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde := x*diff(w(x,y),x)+(a*x^(2*n)*ln(x)* y^2 + (b* x^n *ln(x) - n)*y + c *ln(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {b}{\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }{n}^{2}} \left ( -\ln \left ( x \right ) {x}^{n}\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }n+2\,b{n}^{2}\arctan \left ( {\frac {b \left ( 2\,a{x}^{n}y+b \right ) }{\sqrt {4\,ac{b}^{2}-{b}^{4}}}} \right ) +\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }{x}^{n} \right ) } \right ) \]

____________________________________________________________________________________

51.18 problem number 18

problem number 442

Added January 14, 2019.

Problem 2.5.2.18 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x^k w_x + \left (a y^n (\ln x)^m + b y (\ln x)^s \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = x^k*D[w[x, y], x] + (a*y^n*Log[x]^m + b*y*Log[x]^s)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
pde := x^k*diff(w(x,y),x)+(a*y^n*(ln(x))^m + b*y*(ln(x))^s )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {y}^{-n+1}{{\rm e}^{b\int \!{x}^{-k} \left ( \ln \left ( x \right ) \right ) ^{s}\,{\rm d}x \left ( n-1 \right ) }}+an\int \!{{\rm e}^{b\int \!{x}^{-k} \left ( \ln \left ( x \right ) \right ) ^{s}\,{\rm d}x \left ( n-1 \right ) }}{x}^{-k} \left ( \ln \left ( x \right ) \right ) ^{m}\,{\rm d}x-a\int \!{{\rm e}^{b\int \!{x}^{-k} \left ( \ln \left ( x \right ) \right ) ^{s}\,{\rm d}x \left ( n-1 \right ) }}{x}^{-k} \left ( \ln \left ( x \right ) \right ) ^{m}\,{\rm d}x \right ) \]

____________________________________________________________________________________

51.19 problem number 19

problem number 443

Added January 14, 2019.

Problem 2.5.2.19 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a \ln x+b) w_x + \left (y^2+ c(\ln x)^n y- \lambda ^2 + \lambda c( \ln x)^n \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = (a*Log[x] + b)*D[w[x, y], x] + (y^2 + c*Log[x]^n*y - lambda^2 + lambda*c*Log[x]^n)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
pde := (a*ln(x)+b)*diff(w(x,y),x)+(y^2+ c*(ln(x))^n*y- lambda^2 + lambda*c*(ln(x))^n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{1 \left ( \int \!{\frac {1}{\ln \left ( x \right ) a+b}{{\rm e}^{\int \!{\frac {c \left ( \ln \left ( x \right ) \right ) ^{n}-2\,\lambda }{\ln \left ( x \right ) a+b}}\,{\rm d}x}}}\,{\rm d}x\lambda \,{{\rm e}^{\int \!{\frac {c \left ( \ln \left ( x \right ) \right ) ^{n}-2\,\lambda }{\ln \left ( x \right ) a+b}}\,{\rm d}x+\int \!-{\frac {c \left ( \ln \left ( x \right ) \right ) ^{n}-2\,\lambda }{\ln \left ( x \right ) a+b}}\,{\rm d}x}}+y\int \!{\frac {1}{\ln \left ( x \right ) a+b}{{\rm e}^{\int \!{\frac {c \left ( \ln \left ( x \right ) \right ) ^{n}-2\,\lambda }{\ln \left ( x \right ) a+b}}\,{\rm d}x}}}\,{\rm d}x+{{\rm e}^{\int \!{\frac {c \left ( \ln \left ( x \right ) \right ) ^{n}-2\,\lambda }{\ln \left ( x \right ) a+b}}\,{\rm d}x}} \right ) \left ( {{\rm e}^{\int \!{\frac {c \left ( \ln \left ( x \right ) \right ) ^{n}-2\,\lambda }{\ln \left ( x \right ) a+b}}\,{\rm d}x+\int \!-{\frac {c \left ( \ln \left ( x \right ) \right ) ^{n}-2\,\lambda }{\ln \left ( x \right ) a+b}}\,{\rm d}x}}\lambda +y \right ) ^{-1}} \right ) \]

____________________________________________________________________________________

51.20 problem number 20

problem number 444

Added January 14, 2019.

Problem 2.5.2.20 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a \ln x+b) w_x + \left ((\ln x)^n y^2- c y - \lambda ^2 ( \ln x)^n + c \lambda \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = (a*Log[x] + b)*D[w[x, y], x] + (Log[x]^n*y^2 - c*y - lambda^2*Log[x]^n + c*lambda)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
pde := (a*ln(x)+b)*diff(w(x,y),x)+((ln(x))^n*y^2- c*y - lambda^2*(ln(x))^n + c*lambda )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{1 \left ( \int \!{\frac { \left ( \ln \left ( x \right ) \right ) ^{n}}{\ln \left ( x \right ) a+b}{{\rm e}^{\int \!{\frac {2\, \left ( \ln \left ( x \right ) \right ) ^{n}\lambda -c}{\ln \left ( x \right ) a+b}}\,{\rm d}x}}}\,{\rm d}x\lambda \,{{\rm e}^{\int \!{\frac {2\, \left ( \ln \left ( x \right ) \right ) ^{n}\lambda -c}{\ln \left ( x \right ) a+b}}\,{\rm d}x+\int \!-{\frac {2\, \left ( \ln \left ( x \right ) \right ) ^{n}\lambda -c}{\ln \left ( x \right ) a+b}}\,{\rm d}x}}-y\int \!{\frac { \left ( \ln \left ( x \right ) \right ) ^{n}}{\ln \left ( x \right ) a+b}{{\rm e}^{\int \!{\frac {2\, \left ( \ln \left ( x \right ) \right ) ^{n}\lambda -c}{\ln \left ( x \right ) a+b}}\,{\rm d}x}}}\,{\rm d}x-{{\rm e}^{\int \!{\frac {2\, \left ( \ln \left ( x \right ) \right ) ^{n}\lambda -c}{\ln \left ( x \right ) a+b}}\,{\rm d}x}} \right ) \left ( {{\rm e}^{\int \!{\frac {2\, \left ( \ln \left ( x \right ) \right ) ^{n}\lambda -c}{\ln \left ( x \right ) a+b}}\,{\rm d}x+\int \!-{\frac {2\, \left ( \ln \left ( x \right ) \right ) ^{n}\lambda -c}{\ln \left ( x \right ) a+b}}\,{\rm d}x}}\lambda -y \right ) ^{-1}} \right ) \]

____________________________________________________________________________________

51.21 problem number 21

problem number 445

Added January 14, 2019.

Problem 2.5.2.21 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x^2 \ln (a x) w_x - \left ( x^2 y^2 \ln (a x) + 1\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = x^2*Log[a*x]*D[w[x, y], x] - (x^2*y^2*Log[a*x] + 1)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
pde := x^2*ln(a*x)*diff(w(x,y),x)-(x^2*y^2* ln(a*x)+ 1  )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {xy\ln \left ( ax \right ) -1}{\ln \left ( ax \right ) \Ei \left ( 1,-\ln \left ( ax \right ) \right ) yx+a{x}^{2}y-\Ei \left ( 1,-\ln \left ( ax \right ) \right ) }} \right ) \]

____________________________________________________________________________________

51.22 problem number 22

problem number 446

Added January 14, 2019.

Problem 2.5.2.22 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ \ln ^k(\lambda x) w_x + \left ( a y^n + b y \ln ^m x\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = Log[lambda*x]^k*D[w[x, y], x] + (a*y^n + b*y*Log[x]^m)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
pde :=  (ln(lambda*x))^k*diff(w(x,y),x)+(a*y^n+ b*y* (ln(x))^m )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {y}^{-n+1}{{\rm e}^{b\int \! \left ( \ln \left ( x \right ) \right ) ^{m} \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-k}\,{\rm d}x \left ( n-1 \right ) }}+an\int \!{{\rm e}^{b\int \! \left ( \ln \left ( x \right ) \right ) ^{m} \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-k}\,{\rm d}x \left ( n-1 \right ) }} \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-k}\,{\rm d}x-a\int \!{{\rm e}^{b\int \! \left ( \ln \left ( x \right ) \right ) ^{m} \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-k}\,{\rm d}x \left ( n-1 \right ) }} \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-k}\,{\rm d}x \right ) \]

____________________________________________________________________________________

51.23 problem number 23

problem number 447

Added January 14, 2019.

Problem 2.5.2.23 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ \ln ^k(\lambda x) w_x + \left ( a y^n \ln ^m x + b y \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = Log[lambda*x]^k*D[w[x, y], x] + (a*y^n*Log[x]^m + b*y)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
pde :=  (ln(lambda*x))^k*diff(w(x,y),x)+(a*y^n*(ln(x))^m+ b*y )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {y}^{-n+1}{{\rm e}^{b\int \! \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-k}\,{\rm d}x \left ( n-1 \right ) }}+an\int \!{{\rm e}^{b\int \! \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-k}\,{\rm d}x \left ( n-1 \right ) }} \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-k} \left ( \ln \left ( x \right ) \right ) ^{m}\,{\rm d}x-a\int \!{{\rm e}^{b\int \! \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-k}\,{\rm d}x \left ( n-1 \right ) }} \left ( \ln \left ( \lambda \,x \right ) \right ) ^{-k} \left ( \ln \left ( x \right ) \right ) ^{m}\,{\rm d}x \right ) \]