44 HFOPDE, chapter 2.3.2

44.1 problem number 1
44.2 problem number 2
44.3 problem number 3
44.4 problem number 4
44.5 problem number 5
44.6 problem number 6
44.7 problem number 7
44.8 problem number 8
44.9 problem number 9
44.10 problem number 10
44.11 problem number 11
44.12 problem number 12
44.13 problem number 13
44.14 problem number 14
44.15 problem number 15
44.16 problem number 16
44.17 problem number 17
44.18 problem number 18
44.19 problem number 19
44.20 problem number 20
44.21 problem number 21
44.22 problem number 22
44.23 problem number 23
44.24 problem number 24
44.25 problem number 25
44.26 problem number 26
44.27 problem number 27
44.28 problem number 28
44.29 problem number 29
44.30 problem number 30
44.31 problem number 31
44.32 problem number 32
44.33 problem number 33
44.34 problem number 34
44.35 problem number 35
44.36 problem number 36

____________________________________________________________________________________

44.1 problem number 1

problem number 353

Added January 7, 2019.

Problem 2.3.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( y^2+a \lambda e^{\lambda x}- a^2 e^{2 \lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (y^2 + a*lambda*Exp[lambda*x] - a^2*Exp[2*lambda*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {y \text {ExpIntegralEi}\left (\frac {2 a e^{\lambda x}}{\lambda }\right )-a e^{\lambda x} \text {ExpIntegralEi}\left (\frac {2 a e^{\lambda x}}{\lambda }\right )+\lambda e^{\frac {2 a e^{\lambda x}}{\lambda }}}{a e^{\lambda x}-y}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ (y^2+a*lambda*exp(lambda*x)- a^2*exp(2*lambda *x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{(a{{\rm e}^{\lambda \,x}}-y) \left ( \Ei \left ( 1,-2\,{\frac {a{{\rm e}^{\lambda \,x}}}{\lambda }} \right ) {{\rm e}^{\lambda \,x}}a+{{\rm e}^{2\,{\frac {a{{\rm e}^{\lambda \,x}}}{\lambda }}}}\lambda -\Ei \left ( 1,-2\,{\frac {a{{\rm e}^{\lambda \,x}}}{\lambda }} \right ) y \right ) ^{-1}} \right ) \]

____________________________________________________________________________________

44.2 problem number 2

problem number 354

Added January 7, 2019.

Problem 2.3.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( y^2+b y+ a (\lambda -b) e^{\lambda x} - a^2 e^{2 \lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (y^2 + b*y + a*(lambda - b)*Exp[lambda*x] - a^2*Exp[2*lambda*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (-\frac {2^{b/\lambda } \lambda ^{-\frac {b}{\lambda }} e^{b x} a^{b/\lambda } \left (-y \text {LaguerreL}\left (-\frac {b}{\lambda },\frac {b}{\lambda },\frac {2 a e^{\lambda x}}{\lambda }\right )+2 a e^{\lambda x} \text {LaguerreL}\left (-\frac {b}{\lambda }-1,\frac {b}{\lambda }+1,\frac {2 a e^{\lambda x}}{\lambda }\right )+a e^{\lambda x} \text {LaguerreL}\left (-\frac {b}{\lambda },\frac {b}{\lambda },\frac {2 a e^{\lambda x}}{\lambda }\right )-b \text {LaguerreL}\left (-\frac {b}{\lambda },\frac {b}{\lambda },\frac {2 a e^{\lambda x}}{\lambda }\right )\right )}{a e^{\lambda x}-y}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ (y^2+b*y+ a*(lambda-b)*exp(lambda*x) - a^2*exp(2*lambda*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{a{{\rm e}^{\lambda \,x}}-y} \left ( {{\rm e}^{{\frac {bx\lambda +2\,a{{\rm e}^{\lambda \,x}}}{\lambda }}}}-a{{\rm e}^{\lambda \,x}}\int \!{{\rm e}^{{\frac {bx\lambda +2\,a{{\rm e}^{\lambda \,x}}}{\lambda }}}}\,{\rm d}x+y\int \!{{\rm e}^{{\frac {bx\lambda +2\,a{{\rm e}^{\lambda \,x}}}{\lambda }}}}\,{\rm d}x \right ) } \right ) \]

____________________________________________________________________________________

44.3 problem number 3

problem number 355

Added January 7, 2019.

Problem 2.3.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( y^2+a e^{\lambda x} y-a b e^{\lambda x} - b^2 \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (y^2 + a*Exp[lambda*x]*y - a*b*Exp[lambda*x] - b^2)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {2 b (-1)^{-\frac {b}{\lambda }} \lambda ^{-\frac {2 b}{\lambda }-1} \left (y \lambda ^{\frac {2 b}{\lambda }} \text {Gamma}\left (\frac {2 b}{\lambda },0,-\frac {a e^{\lambda x}}{\lambda }\right )-b \lambda ^{\frac {2 b}{\lambda }} \text {Gamma}\left (\frac {2 b}{\lambda },0,-\frac {a e^{\lambda x}}{\lambda }\right )+\lambda (-1)^{\frac {2 b}{\lambda }} a^{\frac {2 b}{\lambda }} e^{\frac {a e^{\lambda x}}{\lambda }+2 b x}\right )}{b-y}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ (y^2+a*exp(lambda*x)*y-a*b*exp(lambda*x)- b^2)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{-b+y} \left ( {{\rm e}^{{\frac {2\,bx\lambda +a{{\rm e}^{\lambda \,x}}}{\lambda }}}}+y\int \!{{\rm e}^{{\frac {2\,bx\lambda +a{{\rm e}^{\lambda \,x}}}{\lambda }}}}\,{\rm d}x-b\int \!{{\rm e}^{{\frac {2\,bx\lambda +a{{\rm e}^{\lambda \,x}}}{\lambda }}}}\,{\rm d}x \right ) } \right ) \]

____________________________________________________________________________________

44.4 problem number 4

problem number 356

Added January 7, 2019.

Problem 2.3.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x - \left ( y^2-a x e^{\lambda x} y + a e^{\lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] - (y^2 - a*x*Exp[lambda*x]*y + a*Exp[lambda*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)-  (y^2-a*x*exp(lambda*x)*y + a*exp(lambda*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{{\lambda }^{2}x \left ( yx-1 \right ) } \left ( y{x}^{2}\int \!{\frac {1}{{x}^{2}}{{\rm e}^{{\frac {a{{\rm e}^{\lambda \,x}} \left ( \lambda \,x-1 \right ) }{{\lambda }^{2}}}}}}\,{\rm d}x-{{\rm e}^{{\frac {a{{\rm e}^{\lambda \,x}} \left ( \lambda \,x-1 \right ) }{{\lambda }^{2}}}}}-x\int \!{\frac {1}{{x}^{2}}{{\rm e}^{{\frac {a{{\rm e}^{\lambda \,x}} \left ( \lambda \,x-1 \right ) }{{\lambda }^{2}}}}}}\,{\rm d}x \right ) } \right ) \]

____________________________________________________________________________________

44.5 problem number 5

problem number 357

Added January 7, 2019.

Problem 2.3.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left (a e^{\lambda x} y^2 + b e^{-\lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + b*Exp[-(lambda*x)])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {e^{x \left (-\sqrt {\lambda ^2-4 a b}\right )} \left (\sqrt {\lambda ^2-4 a b}-2 a y e^{\lambda x}-\lambda \right )}{2 a y e^{\lambda x} \sqrt {\lambda ^2-4 a b}+\lambda \sqrt {\lambda ^2-4 a b}-4 a b+\lambda ^2}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+  (a*exp(lambda*x)*y^2 + b*exp(-lambda*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {\lambda }{\sqrt {{\lambda }^{2} \left ( 4\,ab-{\lambda }^{2} \right ) }} \left ( 2\,\lambda \,\arctan \left ( {\frac {\lambda \, \left ( 2\,{{\rm e}^{\lambda \,x}}ay+\lambda \right ) }{\sqrt {4\,{\lambda }^{2}ab-{\lambda }^{4}}}} \right ) -\sqrt {{\lambda }^{2} \left ( 4\,ab-{\lambda }^{2} \right ) }x \right ) } \right ) \]

____________________________________________________________________________________

44.6 problem number 6

problem number 358

Added January 7, 2019.

Problem 2.3.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left (a e^{\lambda x} y^2 + b \mu e^{\mu x} - a b^2 e^{(\lambda + 2 \mu )x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + b*mu*Exp[mu*x] - a*b^2*Exp[(lambda + 2*mu)*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+  (a*exp(lambda*x)*y^2 + b*mu*exp(mu*x) - a*b^2*exp((lambda + 2*mu)*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

44.7 problem number 7

problem number 359

Added January 7, 2019.

Problem 2.3.2.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left (a e^{\lambda x} y^2 + b y + c e^{-\lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + b*y + c*Exp[-(lambda*x)])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {\sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}-2 a y e^{\lambda x}-b-\lambda }{2 a y \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2} e^{x \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}+\lambda x}+b^2 e^{x \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}}+2 b \lambda e^{x \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}}+b \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2} e^{x \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}}-4 a c e^{x \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}}+\lambda ^2 e^{x \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}}+\lambda \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2} e^{x \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}}}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+  (a*exp(lambda*x)*y^2 + b*y +c*exp(-lambda*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {1}{\sqrt { \left ( b+\lambda \right ) ^{2} \left ( 4\,ca-{b}^{2}-2\,\lambda \,b-{\lambda }^{2} \right ) }} \left ( \sqrt { \left ( b+\lambda \right ) ^{2} \left ( 4\,ca-{b}^{2}-2\,\lambda \,b-{\lambda }^{2} \right ) }bx+\sqrt { \left ( b+\lambda \right ) ^{2} \left ( 4\,ca-{b}^{2}-2\,\lambda \,b-{\lambda }^{2} \right ) }\lambda \,x-2\,{b}^{2}\arctan \left ( {\frac {2\,{{\rm e}^{\lambda \,x}}ayb+2\,\lambda \,{{\rm e}^{\lambda \,x}}ay+{b}^{2}+2\,\lambda \,b+{\lambda }^{2}}{\sqrt { \left ( b+\lambda \right ) ^{2} \left ( 4\,ca-{b}^{2}-2\,\lambda \,b-{\lambda }^{2} \right ) }}} \right ) -4\,b\lambda \,\arctan \left ( {\frac {2\,{{\rm e}^{\lambda \,x}}ayb+2\,\lambda \,{{\rm e}^{\lambda \,x}}ay+{b}^{2}+2\,\lambda \,b+{\lambda }^{2}}{\sqrt { \left ( b+\lambda \right ) ^{2} \left ( 4\,ca-{b}^{2}-2\,\lambda \,b-{\lambda }^{2} \right ) }}} \right ) -2\,{\lambda }^{2}\arctan \left ( {\frac {2\,{{\rm e}^{\lambda \,x}}ayb+2\,\lambda \,{{\rm e}^{\lambda \,x}}ay+{b}^{2}+2\,\lambda \,b+{\lambda }^{2}}{\sqrt { \left ( b+\lambda \right ) ^{2} \left ( 4\,ca-{b}^{2}-2\,\lambda \,b-{\lambda }^{2} \right ) }}} \right ) \right ) } \right ) \]

____________________________________________________________________________________

44.8 problem number 8

problem number 360

Added January 7, 2019.

Problem 2.3.2.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left (a e^{\lambda x} y^2 + \mu y - a b^2 e^{(\lambda +2 \mu )x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + mu*y - a*b^2*Exp[(lambda + 2*mu)*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \] kernel error generated

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+  (a*exp(lambda*x)*y^2 + mu*y - a*b^2*exp((lambda+2*mu)*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{1 \left ( {{\rm e}^{\lambda \,x}}\sinh \left ( {\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) y+{{\rm e}^{x \left ( \lambda +\mu \right ) }}\cosh \left ( {\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) b \right ) \left ( {{\rm e}^{\lambda \,x}}\cosh \left ( {\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) y+{{\rm e}^{x \left ( \lambda +\mu \right ) }}\sinh \left ( {\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) b \right ) ^{-1}} \right ) \]

____________________________________________________________________________________

44.9 problem number 9

problem number 361

Added January 7, 2019.

Problem 2.3.2.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left (e^{\lambda x} y^2 + a e^{\mu x} y+a \lambda e^{(\mu -lambda)x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (Exp[lambda*x]*y^2 + a*Exp[mu*x]*y + a*lambda*Exp[(mu - lambda)*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {\mu ^{-\frac {\lambda }{\mu }} e^{-\lambda x} \left (y (-1)^{\lambda /\mu } e^{2 \lambda x} a^{\lambda /\mu } \text {Gamma}\left (-\frac {\lambda }{\mu },-\frac {a e^{\mu x}}{\mu }\right )+\lambda (-1)^{\lambda /\mu } e^{\lambda x} a^{\lambda /\mu } \text {Gamma}\left (-\frac {\lambda }{\mu },-\frac {a e^{\mu x}}{\mu }\right )+\mu ^{\frac {\lambda }{\mu }+1} \left (-e^{\frac {a e^{\mu x}}{\mu }}\right )\right )}{y e^{\lambda x}+\lambda }\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+  (exp(lambda*x)*y^2  + a*exp(mu*x)*y+a*lambda*exp((mu-lambda)*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{{{\rm e}^{\lambda \,x}} \left ( {{\rm e}^{\lambda \,x}}y\lambda -{{\rm e}^{\lambda \,x}}y\mu +{\lambda }^{2}-\lambda \,\mu \right ) \left ( {{\rm e}^{\lambda \,x}}y{\mbox {$_1$F$_1$}(-{\frac {\lambda }{\mu }};\,-{\frac {\lambda -\mu }{\mu }};\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }})}\lambda -{{\rm e}^{\lambda \,x}}y{\mbox {$_1$F$_1$}(-{\frac {\lambda }{\mu }};\,-{\frac {\lambda -\mu }{\mu }};\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }})}\mu +{{\rm e}^{\mu \,x}}{\mbox {$_1$F$_1$}(-{\frac {\lambda -\mu }{\mu }};\,-{\frac {-2\,\mu +\lambda }{\mu }};\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }})}a\lambda \right ) ^{-1}} \right ) \]

____________________________________________________________________________________

44.10 problem number 10

problem number 362

Added January 7, 2019.

Problem 2.3.2.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x -\left ( \lambda e^{\lambda x} y^2 - a e^{\mu x} y+a e^{(\mu -lambda)x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] - (lambda*Exp[lambda*x]*y^2 - a*Exp[mu*x]*y + a*lambda*Exp[(mu - lambda)*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {\mu \left (\lambda y e^{\lambda x} \text {LaguerreL}\left (\frac {\lambda ^2}{\mu }-\frac {\lambda }{\mu },\frac {\lambda }{\mu },\frac {a e^{\mu x}}{\mu }\right )+a e^{\mu x} \text {LaguerreL}\left (\frac {\lambda ^2}{\mu }-\frac {\lambda }{\mu }-1,\frac {\lambda }{\mu }+1,\frac {a e^{\mu x}}{\mu }\right )-\lambda \text {LaguerreL}\left (\frac {\lambda ^2}{\mu }-\frac {\lambda }{\mu },\frac {\lambda }{\mu },\frac {a e^{\mu x}}{\mu }\right )\right )}{\lambda \left (-\mu y e^{\lambda x} \text {HypergeometricU}\left (\frac {\lambda }{\mu }-\frac {\lambda ^2}{\mu },\frac {\lambda }{\mu }+1,\frac {a e^{\mu x}}{\mu }\right )+\mu \text {HypergeometricU}\left (\frac {\lambda }{\mu }-\frac {\lambda ^2}{\mu },\frac {\lambda }{\mu }+1,\frac {a e^{\mu x}}{\mu }\right )-a e^{\mu x} \text {HypergeometricU}\left (-\frac {\lambda ^2}{\mu }+\frac {\lambda }{\mu }+1,\frac {\lambda }{\mu }+2,\frac {a e^{\mu x}}{\mu }\right )+a \lambda e^{\mu x} \text {HypergeometricU}\left (-\frac {\lambda ^2}{\mu }+\frac {\lambda }{\mu }+1,\frac {\lambda }{\mu }+2,\frac {a e^{\mu x}}{\mu }\right )\right )}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)-  (lambda*exp(lambda*x)*y^2  - a*exp(mu*x)*y + a*lambda*exp((mu-lambda)*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{1 \left ( {{\rm e}^{\lambda \,x}}y{{\sl M}\left (-{\frac {\lambda \, \left ( \lambda -1 \right ) }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}\lambda -{{\rm e}^{\mu \,x}}{{\sl M}\left (-{\frac {\lambda \, \left ( \lambda -1 \right ) }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}a+{{\sl M}\left (-{\frac {\lambda \, \left ( \lambda -1 \right ) }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}{\lambda }^{2}-{{\sl M}\left (-{\frac {{\lambda }^{2}-\lambda +\mu }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}{\lambda }^{2}-{{\sl M}\left (-{\frac {\lambda \, \left ( \lambda -1 \right ) }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}\lambda +{{\sl M}\left (-{\frac {\lambda \, \left ( \lambda -1 \right ) }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}\mu -{{\sl M}\left (-{\frac {{\lambda }^{2}-\lambda +\mu }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}\mu \right ) \left ( {{\rm e}^{\lambda \,x}}y{{\sl U}\left (-{\frac {\lambda \, \left ( \lambda -1 \right ) }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}\lambda -{{\rm e}^{\mu \,x}}{{\sl U}\left (-{\frac {\lambda \, \left ( \lambda -1 \right ) }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}a+{{\sl U}\left (-{\frac {\lambda \, \left ( \lambda -1 \right ) }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}{\lambda }^{2}-{{\sl U}\left (-{\frac {\lambda \, \left ( \lambda -1 \right ) }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}\lambda +{{\sl U}\left (-{\frac {\lambda \, \left ( \lambda -1 \right ) }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}\mu +{{\sl U}\left (-{\frac {{\lambda }^{2}-\lambda +\mu }{\mu }},\,{\frac {\lambda +\mu }{\mu }},\,{\frac {a{{\rm e}^{\mu \,x}}}{\mu }}\right )}\mu \right ) ^{-1}} \right ) \]

____________________________________________________________________________________

44.11 problem number 11

problem number 363

Added January 7, 2019.

Problem 2.3.2.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a e^{\lambda x} y^2+ a b e^{(\lambda + \mu )x} y - b \mu e^{\mu x}\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + a*b*Exp[(lambda + mu)*x]*y - b*mu*Exp[mu*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+  (a*exp(lambda*x)*y^2+ a*b*exp((lambda +mu)*x)*y - b*mu*exp(mu*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{a \left ( y{{\rm e}^{\lambda \,x}}+{{\rm e}^{x \left ( \lambda +\mu \right ) }}b \right ) {{\rm e}^{{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }}}} \left ( \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) y{a}^{2}b\lambda \,{{\rm e}^{\lambda \,x+1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-\mu \,x\lambda -{\mu }^{2}x}{\lambda +\mu }}}}+ \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) y{a}^{2}b\mu \,{{\rm e}^{\lambda \,x+1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-\mu \,x\lambda -{\mu }^{2}x}{\lambda +\mu }}}}+4\, \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ya\lambda \,\mu \,{{\rm e}^{\lambda \,x+1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}+3\, \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ya\lambda \,\mu \,{{\rm e}^{\lambda \,x+1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}+2\, \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-\mu \,x\lambda -{\mu }^{2}x}{\lambda +\mu }}}}ab{\lambda }^{2}+2\, \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ab{\lambda }^{2}{{\rm e}^{x \left ( \lambda +\mu \right ) +1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}+ \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ab{\mu }^{2}{{\rm e}^{x \left ( \lambda +\mu \right ) +1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}+4\, \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ya{\lambda }^{2}{{\rm e}^{\lambda \,x+1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}+ \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ya{\mu }^{2}{{\rm e}^{\lambda \,x+1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}+2\, \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ya{\lambda }^{2}{{\rm e}^{\lambda \,x+1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}+ \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ya{\mu }^{2}{{\rm e}^{\lambda \,x+1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}+{a}^{2}{b}^{2} \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) \lambda \,{{\rm e}^{x \left ( \lambda +\mu \right ) +1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-\mu \,x\lambda -{\mu }^{2}x}{\lambda +\mu }}}}+{a}^{2}{b}^{2} \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) \mu \,{{\rm e}^{x \left ( \lambda +\mu \right ) +1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-\mu \,x\lambda -{\mu }^{2}x}{\lambda +\mu }}}}+4\, \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ab{\lambda }^{2}{{\rm e}^{x \left ( \lambda +\mu \right ) +1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}+ \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ab{\mu }^{2}{{\rm e}^{x \left ( \lambda +\mu \right ) +1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}- \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}{\mu }^{3}+12\, \WhittakerM \left ( 1/2\,{\frac {4\,\lambda +3\,\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}{\lambda }^{3}+2\, \WhittakerM \left ( 1/2\,{\frac {4\,\lambda +3\,\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}{\mu }^{3}-2\,{{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}} \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {\lambda }^{3}-{{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}} \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {\mu }^{3}-4\, \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}{\lambda }^{3}-8\, \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}{\lambda }^{2}\mu -5\, \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}\lambda \,{\mu }^{2}+20\, \WhittakerM \left ( 1/2\,{\frac {4\,\lambda +3\,\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}{\lambda }^{2}\mu +11\, \WhittakerM \left ( 1/2\,{\frac {4\,\lambda +3\,\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}\lambda \,{\mu }^{2}-5\,{{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}} \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {\lambda }^{2}\mu -4\,{{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}} \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) \lambda \,{\mu }^{2}+3\, \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-\mu \,x\lambda -{\mu }^{2}x}{\lambda +\mu }}}}ab\lambda \,\mu +4\, \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ab\lambda \,\mu \,{{\rm e}^{x \left ( \lambda +\mu \right ) +1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}+3\, \WhittakerM \left ( -1/2\,{\frac {\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) ab\lambda \,\mu \,{{\rm e}^{x \left ( \lambda +\mu \right ) +1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-2\,{\lambda }^{2}x-5\,\mu \,x\lambda -3\,{\mu }^{2}x}{\lambda +\mu }}}}+ \WhittakerM \left ( 1/2\,{\frac {2\,\lambda +\mu }{\lambda +\mu }},1/2\,{\frac {3\,\lambda +2\,\mu }{\lambda +\mu }},{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}}{\lambda +\mu }} \right ) {{\rm e}^{1/2\,{\frac {ab{{\rm e}^{x \left ( \lambda +\mu \right ) }}-\mu \,x\lambda -{\mu }^{2}x}{\lambda +\mu }}}}ab{\mu }^{2} \right ) ^{-1}} \right ) \]

____________________________________________________________________________________

44.12 problem number 12

problem number 364

Added January 7, 2019.

Problem 2.3.2.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a e^{(2 \lambda + \mu ) x} y^2+ \left (b e^{(\lambda + \mu )x} -\lambda \right ) y + c e^{\mu x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*Exp[(2*lambda + mu)*x]*y^2 + (b*Exp[(lambda + mu)*x] - lambda)*y + c*Exp[mu*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {i \pi e^{-\frac {\sqrt {b^2-4 a c} e^{x (\lambda +\mu )}}{2 (\lambda +\mu )}} \left (\sqrt {b^2-4 a c} e^{x (\lambda +\mu )}-2 a y e^{x (2 \lambda +\mu )}+b \left (-e^{x (\lambda +\mu )}\right )\right )}{2 \left (2 a y e^{x (2 \lambda +\mu )} \cosh \left (\frac {\sqrt {b^2-4 a c} e^{x (\lambda +\mu )}}{2 (\lambda +\mu )}\right )+\sqrt {b^2-4 a c} e^{x (\lambda +\mu )} \sinh \left (\frac {\sqrt {b^2-4 a c} e^{x (\lambda +\mu )}}{2 (\lambda +\mu )}\right )+b e^{x (\lambda +\mu )} \cosh \left (\frac {\sqrt {b^2-4 a c} e^{x (\lambda +\mu )}}{2 (\lambda +\mu )}\right )\right )}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+  (a*exp((2*lambda +mu)*x)*y^2+ (b*exp((lambda +mu)*x) -lambda)*y + c*exp(mu*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {b}{\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) } \left ( \lambda +\mu \right ) } \left ( 2\,b\lambda \,\arctan \left ( {\frac {b \left ( 2\,{{\rm e}^{\lambda \,x}}ay+b \right ) }{\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }}} \right ) +2\,b\mu \,\arctan \left ( {\frac {b \left ( 2\,{{\rm e}^{\lambda \,x}}ay+b \right ) }{\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }}} \right ) -{{\rm e}^{x \left ( \lambda +\mu \right ) }}\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) } \right ) } \right ) \]

____________________________________________________________________________________

44.13 problem number 13

problem number 365

Added January 7, 2019.

Problem 2.3.2.13 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( e^{\lambda x} \left ( y- b e^{\mu x} \right )^2 + b \mu e^{\mu x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (Exp[lambda*x]*(y - b*Exp[mu*x])^2 + b*mu*Exp[mu*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {b e^{\lambda x+\mu x}-y e^{\lambda x}-\lambda }{\lambda \left (b e^{\mu x}-y\right )}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ ( exp(lambda*x) *(y- b*exp(mu*x))^2 + b*mu*exp(mu*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {b{{\rm e}^{\lambda \,x+\mu \,x}}-y{{\rm e}^{\lambda \,x}}-\lambda }{\lambda \, \left ( b{{\rm e}^{\mu \,x}}-y \right ) }} \right ) \]

____________________________________________________________________________________

44.14 problem number 14

problem number 366

Added January 7, 2019.

Problem 2.3.2.14 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a e^{\lambda x} y^2+ b n x^{n-1} - a b^2 e^{\lambda x} x^{2 n} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + b*n*x^(n - 1) - a*b^2*Exp[lambda*x]*x^(2*n))*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ ( a*exp(lambda*x)*y^2+ b*n*x^(n-1) - a*b^2*exp(lambda*x)*x^(2*n))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

44.15 problem number 15

problem number 367

Added January 7, 2019.

Problem 2.3.2.15 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( e^{\lambda x} y^2+ a x^n y + a \lambda x^n e^{-\lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (Exp[lambda*x]*y^2 + a*x^n*y + a*lambda*x^n*Exp[-(lambda*x)])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ ( exp(lambda*x)*y^2+ a*x^n*y + a*lambda*x^n*exp(-lambda*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {1}{y{{\rm e}^{\lambda \,x}}+\lambda } \left ( {{\rm e}^{\lambda \,x}}y\int \!{{\rm e}^{{\frac {x \left ( {x}^{n}a-\lambda \,n-\lambda \right ) }{n+1}}}}\,{\rm d}x+\int \!{{\rm e}^{{\frac {x \left ( {x}^{n}a-\lambda \,n-\lambda \right ) }{n+1}}}}\,{\rm d}x\lambda +{{\rm e}^{{\frac {x \left ( {x}^{n}a-\lambda \,n-\lambda \right ) }{n+1}}}} \right ) } \right ) \]

____________________________________________________________________________________

44.16 problem number 16

problem number 368

Added January 7, 2019.

Problem 2.3.2.16 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( \lambda e^{\lambda x} y^2+ a x^n e^{\lambda x} y - a x^n e^{2 \lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (lambda*Exp[lambda*x]*y^2 + a*x^n*Exp[lambda*x]*y - a*x^n*Exp[2*lambda*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+  ( lambda*exp(lambda*x)*y^2+ a*x^n*exp(lambda*x)*y - a*x^n*exp(2*lambda*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

44.17 problem number 17

problem number 369

Added January 7, 2019.

Problem 2.3.2.17 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a e^{\lambda x} y^2- a b x^n e^{\lambda x} y + b n x^{n-1} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 - a*b*x^n*Exp[lambda*x]*y + b*n*x^(n - 1))*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+  ( a*exp(lambda*x)*y^2- a*b*x^n*exp(lambda*x)*y + b*n*x^(n-1))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {a \left ( b{x}^{n}-y \right ) \left ( -\int \!\lambda \,{{\rm e}^{-{\frac {ab \left ( -\lambda \right ) ^{-n} \left ( {x}^{n} \left ( -\lambda \right ) ^{n}n\Gamma \left ( n \right ) \left ( -\lambda \,x \right ) ^{-n}-{x}^{n} \left ( -\lambda \right ) ^{n}{{\rm e}^{\lambda \,x}}-{x}^{n} \left ( -\lambda \right ) ^{n}n \left ( -\lambda \,x \right ) ^{-n}\Gamma \left ( n,-\lambda \,x \right ) \right ) }{\lambda }}+\lambda \,x}}\,{\rm d}x{x}^{n}ab+\int \!\lambda \,{{\rm e}^{-{\frac {ab \left ( -\lambda \right ) ^{-n} \left ( {x}^{n} \left ( -\lambda \right ) ^{n}n\Gamma \left ( n \right ) \left ( -\lambda \,x \right ) ^{-n}-{x}^{n} \left ( -\lambda \right ) ^{n}{{\rm e}^{\lambda \,x}}-{x}^{n} \left ( -\lambda \right ) ^{n}n \left ( -\lambda \,x \right ) ^{-n}\Gamma \left ( n,-\lambda \,x \right ) \right ) }{\lambda }}+\lambda \,x}}\,{\rm d}xya+\lambda \,{{\rm e}^{-{\frac {ab \left ( -\lambda \right ) ^{-n} \left ( {x}^{n} \left ( -\lambda \right ) ^{n}n\Gamma \left ( n \right ) \left ( -\lambda \,x \right ) ^{-n}-{x}^{n} \left ( -\lambda \right ) ^{n}{{\rm e}^{\lambda \,x}}-{x}^{n} \left ( -\lambda \right ) ^{n}n \left ( -\lambda \,x \right ) ^{-n}\Gamma \left ( n,-\lambda \,x \right ) \right ) }{\lambda }}}} \right ) ^{-1}} \right ) \]

____________________________________________________________________________________

44.18 problem number 18

problem number 370

Added January 7, 2019.

Problem 2.3.2.18 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a x^n y^2 + b \lambda e^{\lambda x} - a b^2 x^n e^{2 \lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*x^n*y^2 + b*lambda*Exp[lambda*x] - a*b^2*x^n*Exp[2*lambda*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ ( a*x^n*y^2 + b*lambda*exp(lambda*x) - a*b^2*x^n*exp(2*lambda*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

44.19 problem number 19

problem number 371

Added January 7, 2019.

Problem 2.3.2.19 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a x^n y^2 + \lambda y - a b^2 x^n e^{2 \lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*x^n*y^2 + lambda*y - a*b^2*x^n*Exp[2*lambda*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (-i \left (a b (-1)^{-n} \lambda ^{-n-1} \text {Gamma}(n+1,-\lambda x)+\tanh ^{-1}\left (\frac {y e^{-\lambda x}}{b}\right )\right )\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+  ( a*x^n*y^2 + lambda*y - a*b^2*x^n*exp(2*lambda*x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {i}{\lambda } \left ( a\Gamma \left ( n \right ) {x}^{n} \left ( -\lambda \,x \right ) ^{-n}bn-\Gamma \left ( n,-\lambda \,x \right ) a{x}^{n} \left ( -\lambda \,x \right ) ^{-n}bn-{{\rm e}^{\lambda \,x}}{x}^{n}ab-\arctanh \left ( {\frac {{{\rm e}^{-\lambda \,x}}y}{b}} \right ) \lambda \right ) } \right ) \]

____________________________________________________________________________________

44.20 problem number 20

problem number 372

Added January 7, 2019.

Problem 2.3.2.20 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a x^n y^2 - a b x^n e^{\lambda x} y + b \lambda e^{\lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*x^n*y^2 - a*b*x^n*Exp[lambda*x]*y + b*lambda*Exp[lambda*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ ( a*x^n*y^2 - a*b*x^n*exp(lambda*x)*y + b*lambda*exp(lambda*x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

44.21 problem number 21

problem number 373

Added January 7, 2019.

Problem 2.3.2.21 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a x^n y^2 - a x^n \left (b e^{\lambda x} + c \right )y + b \lambda e^{\lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*x^n*y^2 - a*x^n*(b*Exp[lambda*x] + c)*y + b*lambda*Exp[lambda*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ ( a*x^n*y^2 - a*x^n*(b*exp(lambda*x) + c )*y + b*lambda*exp(lambda*x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

44.22 problem number 22

problem number 374

Added January 7, 2019.

Problem 2.3.2.22 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a x^n e^{2 \lambda x} y^2 + \left ( b x^n e^{\lambda x} - \lambda \right ) y + c x^n \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*x^n*Exp[2*lambda*x]*y^2 + (b*x^n*Exp[lambda*x] - lambda)*y + c*x^n)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {-4 a^{3/2} c^{3/2} (-1)^{-n} \lambda ^{-n-1} \text {Gamma}(n+1,-\lambda x)+\sqrt {a} b^2 \sqrt {c} (-1)^{-n} \lambda ^{-n-1} \text {Gamma}(n+1,-\lambda x)+2 \sqrt {a} \sqrt {c} \sqrt {4 a c-b^2} \tan ^{-1}\left (\frac {2 a y e^{\lambda x} \sqrt {4 a c-b^2}-b \sqrt {4 a c-b^2}}{4 a c-b^2}\right )}{4 a c-b^2}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ (a*x^n*exp(2*lambda*x)*y^2 + (b*x^n*exp(lambda*x) - lambda)*y + c*x^n)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {b}{\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }\lambda } \left ( -{{\rm e}^{\lambda \,x}}\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }{x}^{n}- \left ( -\lambda \,x \right ) ^{-n}\Gamma \left ( n,-\lambda \,x \right ) \sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }{x}^{n}n+2\,b\lambda \,\arctan \left ( {\frac {b \left ( 2\,{{\rm e}^{\lambda \,x}}ay+b \right ) }{\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }}} \right ) + \left ( -\lambda \,x \right ) ^{-n}\Gamma \left ( n \right ) \sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }{x}^{n}n \right ) } \right ) \]

____________________________________________________________________________________

44.23 problem number 23

problem number 375

Added January 10, 2019.

Problem 2.3.2.23 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a e^{\lambda x} (y- b x^n - c)^2 +b n x^{n-1} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*(y - b*x^n - c)^2 + b*n*x^(n - 1))*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {a b e^{\lambda x} x^n+a c e^{\lambda x}-a y e^{\lambda x}-\lambda }{\lambda \left (b x^n+c-y\right )}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ (  a*exp(lambda*x)*(y- b*x^n - c)^2 +b*n*x^(n-1))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {{{\rm e}^{\lambda \,x}}{x}^{n}ab-{{\rm e}^{\lambda \,x}}ay+{{\rm e}^{\lambda \,x}}ac-\lambda }{\lambda \, \left ( b{x}^{n}+c-y \right ) }} \right ) \]

____________________________________________________________________________________

44.24 problem number 24

problem number 376

Added January 10, 2019.

Problem 2.3.2.24 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( y^2+2 a \lambda x e^{\lambda x^2} - a^2 e^{2\lambda x^2}\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (y^2 + 2*a*lambda*x*Exp[lambda*x^2] - a^2*Exp[2*lambda*x^2])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ (   y^2+2*a*lambda*x*exp(lambda*x^2) - a^2*exp(2*lambda*x^2))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

44.25 problem number 25

problem number 377

Added January 10, 2019.

Problem 2.3.2.25 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a e^{-\lambda x^2} y^2 + \lambda x y + a b^2 \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*Exp[-(lambda*x^2)]*y^2 + lambda*x*y + a*b^2)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {1}{2} \left (2 \tan ^{-1}\left (\frac {y e^{-\frac {\lambda x^2}{2}}}{b}\right )-\frac {\sqrt {2 \pi } a b \text {Erf}\left (\frac {\sqrt {\lambda } x}{\sqrt {2}}\right )}{\sqrt {\lambda }}\right )\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ (    a*exp(-lambda*x^2)*y^2 + lambda*x*y + a*b^2)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( 1/2\,{\frac {1}{\sqrt {\lambda }} \left ( ab\sqrt {\pi }\sqrt {2}\erf \left ( 1/2\,\sqrt {2}\sqrt {\lambda }x \right ) -2\,\arctan \left ( {\frac {{{\rm e}^{-1/2\,\lambda \,{x}^{2}}}y}{b}} \right ) \sqrt {\lambda } \right ) } \right ) \]

____________________________________________________________________________________

44.26 problem number 26

problem number 378

Added January 10, 2019.

Problem 2.3.2.26 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a x^n y^2 + \lambda x y + a b^2 x^n e^{\lambda x^2}\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu]; 
 pde = D[w[x, y], x] + (a*x^n*y^2 + lambda*x*y + a*b^2*x^n*Exp[lambda*x^2])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (-\frac {1}{2} i \left (a b i^{-n} 2^{\frac {n}{2}+\frac {1}{2}} \lambda ^{-\frac {n}{2}-\frac {1}{2}} \text {Gamma}\left (\frac {n}{2}+\frac {1}{2},-\frac {\lambda x^2}{2}\right )+2 i \tan ^{-1}\left (\frac {y e^{-\frac {\lambda x^2}{2}}}{b}\right )\right )\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu'; 
pde :=  diff(w(x,y),x)+ (   a*x^n*y^2 + lambda*x*y + a*b^2*x^n*exp(lambda*x^2) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {2}^{n/2-1/2}{x}^{n+1}ab \left ( -\lambda \,{x}^{2} \right ) ^{-1/2-n/2}\Gamma \left ( n/2+1/2 \right ) -{2}^{n/2-1/2}{x}^{n+1}ab \left ( -\lambda \,{x}^{2} \right ) ^{-1/2-n/2}\Gamma \left ( n/2+1/2,-1/2\,\lambda \,{x}^{2} \right ) -\arctan \left ( {\frac {{{\rm e}^{-1/2\,\lambda \,{x}^{2}}}y}{b}} \right ) \right ) \]

____________________________________________________________________________________

44.27 problem number 27

problem number 379

Added January 10, 2019.

Problem 2.3.2.27 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a e^{2 \lambda x} y^3 + b e^{\lambda x} y^2 + c y+ d e^{-\lambda x}\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] + (a*Exp[2*lambda*x]*y^3 + b*Exp[lambda*x]*y^2 + c*y + d*Exp[-(lambda*x)])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde :=  diff(w(x,y),x)+ (  a*exp(2*lambda*x)*y^3 + b*exp(lambda*x)*y^2 + c*y+ d*exp(-lambda*x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( x-\sum _{{\it \_R}=\RootOf \left ( a{{\it \_Z}}^{3}+b{{\it \_Z}}^{2}+ \left ( c+\lambda \right ) {\it \_Z}+d \right ) }{\frac {\ln \left ( y{{\rm e}^{\lambda \,x}}-{\it \_R} \right ) }{3\,{{\it \_R}}^{2}a+2\,{\it \_R}\,b+c+\lambda }} \right ) \] Solution contains RootOf

____________________________________________________________________________________

44.28 problem number 28

problem number 380

Added January 10, 2019.

Problem 2.3.2.28 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +\left ( a e^{\lambda x} y^3 + 3 a b e^{\lambda x} y^2 + c y- 2 a b^3 e^{\lambda x} + b c\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^3 + 3*a*b*Exp[lambda*x]*y^2 + c*y - 2*a*b^3*Exp[lambda*x] + b*c)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {e^{-\frac {6 a b^2 e^{\lambda x}}{\lambda }} \left (2 y^2 e^{\frac {6 a b^2 e^{\lambda x}}{\lambda }} \int _1^x a \exp \left (-\frac {6 a b^2 e^{\lambda K[1]}}{\lambda }+2 c K[1]+\lambda K[1]\right ) \, dK[1]+4 b y e^{\frac {6 a b^2 e^{\lambda x}}{\lambda }} \left (\int _1^x a \exp \left (-\frac {6 a b^2 e^{\lambda K[1]}}{\lambda }+2 c K[1]+\lambda K[1]\right ) \, dK[1]\right )+2 b^2 e^{\frac {6 a b^2 e^{\lambda x}}{\lambda }} \left (\int _1^x a \exp \left (-\frac {6 a b^2 e^{\lambda K[1]}}{\lambda }+2 c K[1]+\lambda K[1]\right ) \, dK[1]\right )+e^{2 c x}\right )}{(b+y)^2}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde :=  diff(w(x,y),x)+ ( a*exp(lambda*x)*y^3 + 3*a*b*exp(lambda*x)*y^2 + c*y- 2*a*b^3*exp(lambda*x) + b*c )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{ \left ( b+y \right ) ^{2}} \left ( 2\,a{b}^{2}\int \!{{\rm e}^{-{\frac {6\,a{{\rm e}^{\lambda \,x}}{b}^{2}-2\,c\lambda \,x-{\lambda }^{2}x}{\lambda }}}}\,{\rm d}x+4\,yab\int \!{{\rm e}^{-{\frac {6\,a{{\rm e}^{\lambda \,x}}{b}^{2}-2\,c\lambda \,x-{\lambda }^{2}x}{\lambda }}}}\,{\rm d}x+2\,{y}^{2}a\int \!{{\rm e}^{-{\frac {6\,a{{\rm e}^{\lambda \,x}}{b}^{2}-2\,c\lambda \,x-{\lambda }^{2}x}{\lambda }}}}\,{\rm d}x+{{\rm e}^{2\,cx-6\,{\frac {a{{\rm e}^{\lambda \,x}}{b}^{2}}{\lambda }}}} \right ) } \right ) \]

____________________________________________________________________________________

44.29 problem number 29

problem number 381

Added January 10, 2019.

Problem 2.3.2.29 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x +\left ( a e^{\lambda x} y^2 + k y + a b^2 x^{2 k} e^{\lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = x*D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + k*y + a*b^2*x^(2*k)*Exp[lambda*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (a \sqrt {b^2} x^k (-\lambda x)^{-k} \text {Gamma}(k,-\lambda x)+\tan ^{-1}\left (\frac {y x^{-k}}{\sqrt {b^2}}\right )\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde :=  x*diff(w(x,y),x)+ ( a*exp(lambda*x)* y^2 + k*y + a*b^2*x^(2*k)*exp(lambda*x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( a\Gamma \left ( k \right ) {x}^{k} \left ( -\lambda \,x \right ) ^{-k}b-\Gamma \left ( k,-\lambda \,x \right ) a{x}^{k} \left ( -\lambda \,x \right ) ^{-k}b-\arctan \left ( {\frac {y{x}^{-k}}{b}} \right ) \right ) \]

____________________________________________________________________________________

44.30 problem number 30

problem number 382

Added January 10, 2019.

Problem 2.3.2.30 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x +\left ( a x^{2 n} e^{\lambda x} y^2 + (b x^n e^{\lambda x} - n) y + c e^{\lambda x} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = x*D[w[x, y], x] + (a*x^(2*n)*Exp[lambda*x]*y^2 + (b*x^n*Exp[lambda*x] - n)*y + c*Exp[lambda*x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {-b^2 c (-\lambda x)^{-n} \sqrt {\frac {a x^{2 n}}{c}} \text {Gamma}(n,-\lambda x)+4 a c^2 (-\lambda x)^{-n} \sqrt {\frac {a x^{2 n}}{c}} \text {Gamma}(n,-\lambda x)-2 \sqrt {a} \sqrt {c} \sqrt {4 a c-b^2} \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {c} \sqrt {\frac {b^2}{a c}} \sqrt {4 a c-b^2}-2 \sqrt {a} \sqrt {c} y \sqrt {4 a c-b^2} \sqrt {\frac {a x^{2 n}}{c}}}{4 a c-b^2}\right )}{4 a c-b^2}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde :=  x*diff(w(x,y),x)+ (  a*x^(2*n)*exp(lambda*x)*y^2 + (b*x^n*exp(lambda*x) - n)*y + c*exp(lambda*x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {b}{\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }} \left ( -\Gamma \left ( n \right ) \left ( -\lambda \,x \right ) ^{-n}\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }{x}^{n}+\Gamma \left ( n,-\lambda \,x \right ) \left ( -\lambda \,x \right ) ^{-n}\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }{x}^{n}+2\,b\arctan \left ( {\frac {b \left ( 2\,a{x}^{n}y+b \right ) }{\sqrt {{b}^{2} \left ( 4\,ca-{b}^{2} \right ) }}} \right ) \right ) } \right ) \]

____________________________________________________________________________________

44.31 problem number 31

problem number 383

Added January 10, 2019.

Problem 2.3.2.31 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ y w_x + e^{\lambda x} \left ( (2 a \lambda x+a + b)y - e^{\lambda x}(a^2 \lambda x^2 + a b x -c) \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = y*D[w[x, y], x] + Exp[lambda*x]*((2*a*lambda*x + a + b)*y - Exp[lambda*x]*(a^2*lambda*x^2 + a*b*x - c))*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde :=  y*diff(w(x,y),x)+ exp(lambda*x)* ( (2*a*lambda*x+a + b)*y - exp(lambda*x)*(a^2*lambda*x^2 + a*b*x-c) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -1/2\,{\frac {1}{a} \left ( 2\,ax\lambda \,{{\rm e}^{2\,{1\arctan \left ( {\frac {2\,y\lambda \,{{\rm e}^{-\lambda \,x}}-2\,ax\lambda -b}{a}{\frac {1}{\sqrt {-{\frac {{b}^{2}+4\,\lambda \,c}{{a}^{2}}}}}}} \right ) {\frac {1}{\sqrt {-{\frac {{b}^{2}+4\,\lambda \,c}{{a}^{2}}}}}}}}}+\sqrt {-{\frac {{b}^{2}+4\,\lambda \,c}{{a}^{2}}}}\int ^{-2\,{1\arctan \left ( {\frac {2\,y\lambda \,{{\rm e}^{-\lambda \,x}}-2\,ax\lambda -b}{a}{\frac {1}{\sqrt {-{\frac {{b}^{2}+4\,\lambda \,c}{{a}^{2}}}}}}} \right ) {\frac {1}{\sqrt {-{\frac {{b}^{2}+4\,\lambda \,c}{{a}^{2}}}}}}}}\!\tan \left ( 1/2\,{\it \_a}\,\sqrt {-{\frac {{b}^{2}+4\,\lambda \,c}{{a}^{2}}}} \right ) {{\rm e}^{-{\it \_a}}}{d{\it \_a}}a+b{{\rm e}^{2\,{1\arctan \left ( {\frac {2\,y\lambda \,{{\rm e}^{-\lambda \,x}}-2\,ax\lambda -b}{a}{\frac {1}{\sqrt {-{\frac {{b}^{2}+4\,\lambda \,c}{{a}^{2}}}}}}} \right ) {\frac {1}{\sqrt {-{\frac {{b}^{2}+4\,\lambda \,c}{{a}^{2}}}}}}}}} \right ) } \right ) \]

____________________________________________________________________________________

44.32 problem number 32

problem number 384

Added January 10, 2019.

Problem 2.3.2.32 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a e^{\lambda x} w_x + b y^m w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = a*Exp[lambda*x]*D[w[x, y], x] + b*y^m*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (-\frac {e^{-\lambda x} y^{-m} \left (a \lambda y e^{\lambda x}+b y^m-b m y^m\right )}{a \lambda (m-1)}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde :=   a*exp(lambda*x)*diff(w(x,y),x)+  b*y^m*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {b{{\rm e}^{-\lambda \,x}}m-{y}^{1-m}a\lambda -b{{\rm e}^{-\lambda \,x}}}{a\lambda }} \right ) \]

____________________________________________________________________________________

44.33 problem number 33

problem number 385

Added January 10, 2019.

Problem 2.3.2.33 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a e^y + b x) w_x + w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = (a*Exp[y] + b*x)*D[w[x, y], x] + D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde :=   (a*exp(y)+b*x)*diff(w(x,y),x)+ diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac { \left ( x{{\rm e}^{y \left ( b-1 \right ) }}b-x{{\rm e}^{y \left ( b-1 \right ) }}+a{{\rm e}^{by}} \right ) {{\rm e}^{-y \left ( 2\,b-1 \right ) }}}{b-1}} \right ) \]

____________________________________________________________________________________

44.34 problem number 34

problem number 386

Added January 10, 2019.

Problem 2.3.2.34 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a x^n e^{\lambda y} + b x y^m) w_x + e^{\mu y} w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = (a*x^n*Exp[lambda*y] + b*x*y^m)*D[w[x, y], x] + Exp[mu*y]*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde :=   (a*x^n*exp(lambda*y)+ b*x*y^m)*diff(w(x,y),x)+ exp(mu*y)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {{x}^{ \left ( m+1 \right ) ^{-1}}{{\rm e}^{{\frac {bn{{\rm e}^{-1/2\,\mu \,y}}{y}^{m} \left ( \mu \,y \right ) ^{-m/2} \WhittakerM \left ( m/2,m/2+1/2,\mu \,y \right ) }{\mu \, \left ( m+1 \right ) }}}}{x}^{{\frac {m}{m+1}}} \left ( {x}^{{\frac {mn}{m+1}}} \right ) ^{-1} \left ( {x}^{{\frac {n}{m+1}}} \right ) ^{-1} \left ( {{\rm e}^{{\frac {b{{\rm e}^{-1/2\,\mu \,y}}{y}^{m} \left ( \mu \,y \right ) ^{-m/2} \WhittakerM \left ( m/2,m/2+1/2,\mu \,y \right ) }{\mu \, \left ( m+1 \right ) }}}} \right ) ^{-1}}+an\int \!{{\rm e}^{{\frac {bn{{\rm e}^{-1/2\,\mu \,y}}{y}^{m} \left ( \mu \,y \right ) ^{-m/2} \WhittakerM \left ( m/2,m/2+1/2,\mu \,y \right ) -b{{\rm e}^{-1/2\,\mu \,y}}{y}^{m} \left ( \mu \,y \right ) ^{-m/2} \WhittakerM \left ( m/2,m/2+1/2,\mu \,y \right ) +\lambda \,\mu \,ym-{\mu }^{2}ym+\lambda \,\mu \,y-{\mu }^{2}y}{\mu \, \left ( m+1 \right ) }}}}\,{\rm d}y-a\int \!{{\rm e}^{{\frac {bn{{\rm e}^{-1/2\,\mu \,y}}{y}^{m} \left ( \mu \,y \right ) ^{-m/2} \WhittakerM \left ( m/2,m/2+1/2,\mu \,y \right ) -b{{\rm e}^{-1/2\,\mu \,y}}{y}^{m} \left ( \mu \,y \right ) ^{-m/2} \WhittakerM \left ( m/2,m/2+1/2,\mu \,y \right ) +\lambda \,\mu \,ym-{\mu }^{2}ym+\lambda \,\mu \,y-{\mu }^{2}y}{\mu \, \left ( m+1 \right ) }}}}\,{\rm d}y \right ) \]

____________________________________________________________________________________

44.35 problem number 35

problem number 387

Added January 10, 2019.

Problem 2.3.2.35 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a x^n y^m+ b x e^{\lambda y}) w_x + y^k w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = (a*x^n*y^m + b*x*Exp[lambda*y])*D[w[x, y], x] + y^k*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde :=  (a*x^n*y^m+ b *x*exp(lambda*y))*diff(w(x,y),x)+ y^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {x}{{x}^{n}}{{\rm e}^{{\frac {{y}^{-k}{{\rm e}^{y\lambda }}bn}{\lambda }}}}{{\rm e}^{{\frac { \left ( -y\lambda \right ) ^{k}\Gamma \left ( -k,-y\lambda \right ) bk{y}^{-k}}{\lambda }}}}{{\rm e}^{{\frac {{y}^{-k} \left ( -y\lambda \right ) ^{k}b\Gamma \left ( 1-k \right ) }{\lambda }}}} \left ( {{\rm e}^{{\frac { \left ( -y\lambda \right ) ^{k}\Gamma \left ( -k,-y\lambda \right ) bkn{y}^{-k}}{\lambda }}}} \right ) ^{-1} \left ( {{\rm e}^{{\frac {{y}^{-k} \left ( -y\lambda \right ) ^{k}b\Gamma \left ( 1-k \right ) n}{\lambda }}}} \right ) ^{-1} \left ( {{\rm e}^{{\frac {{y}^{-k}{{\rm e}^{y\lambda }}b}{\lambda }}}} \right ) ^{-1}}+an\int \!{{\rm e}^{{\frac { \left ( n-1 \right ) b{y}^{-k} \left ( k\Gamma \left ( -k \right ) \left ( -y\lambda \right ) ^{k}-k \left ( -y\lambda \right ) ^{k}\Gamma \left ( -k,-y\lambda \right ) +{{\rm e}^{y\lambda }} \right ) }{\lambda }}}}{y}^{-k+m}\,{\rm d}y-a\int \!{{\rm e}^{{\frac { \left ( n-1 \right ) b{y}^{-k} \left ( k\Gamma \left ( -k \right ) \left ( -y\lambda \right ) ^{k}-k \left ( -y\lambda \right ) ^{k}\Gamma \left ( -k,-y\lambda \right ) +{{\rm e}^{y\lambda }} \right ) }{\lambda }}}}{y}^{-k+m}\,{\rm d}y \right ) \]

____________________________________________________________________________________

44.36 problem number 36

problem number 388

Added January 10, 2019.

Problem 2.3.2.36 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a x^n y^m+ b x y^k) w_x + e^{\lambda y} w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d]; 
 pde = (a*x^n*y^m + b*x*y^k)*D[w[x, y], x] + Exp[lambda*y]*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; C:='C';lambda:='lambda';s:='s';B:='B';mu:='mu';d:='d'; 
pde :=  (a*x^n*y^m+ b *x*y^k)*diff(w(x,y),x)+ exp(lambda*y)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {{x}^{ \left ( k+1 \right ) ^{-1}}{{\rm e}^{{\frac {bn{{\rm e}^{-1/2\,y\lambda }}{y}^{k} \left ( y\lambda \right ) ^{-k/2} \WhittakerM \left ( k/2,k/2+1/2,y\lambda \right ) }{\lambda \, \left ( k+1 \right ) }}}}{x}^{{\frac {k}{k+1}}} \left ( {x}^{{\frac {kn}{k+1}}} \right ) ^{-1} \left ( {x}^{{\frac {n}{k+1}}} \right ) ^{-1} \left ( {{\rm e}^{{\frac {b{{\rm e}^{-1/2\,y\lambda }}{y}^{k} \left ( y\lambda \right ) ^{-k/2} \WhittakerM \left ( k/2,k/2+1/2,y\lambda \right ) }{\lambda \, \left ( k+1 \right ) }}}} \right ) ^{-1}}+an\int \!{{\rm e}^{{\frac {bn{{\rm e}^{-1/2\,y\lambda }}{y}^{k} \left ( y\lambda \right ) ^{-k/2} \WhittakerM \left ( k/2,k/2+1/2,y\lambda \right ) -b{{\rm e}^{-1/2\,y\lambda }}{y}^{k} \left ( y\lambda \right ) ^{-k/2} \WhittakerM \left ( k/2,k/2+1/2,y\lambda \right ) -{\lambda }^{2}yk-{\lambda }^{2}y}{\lambda \, \left ( k+1 \right ) }}}}{y}^{m}\,{\rm d}y-a\int \!{{\rm e}^{{\frac {bn{{\rm e}^{-1/2\,y\lambda }}{y}^{k} \left ( y\lambda \right ) ^{-k/2} \WhittakerM \left ( k/2,k/2+1/2,y\lambda \right ) -b{{\rm e}^{-1/2\,y\lambda }}{y}^{k} \left ( y\lambda \right ) ^{-k/2} \WhittakerM \left ( k/2,k/2+1/2,y\lambda \right ) -{\lambda }^{2}yk-{\lambda }^{2}y}{\lambda \, \left ( k+1 \right ) }}}}{y}^{m}\,{\rm d}y \right ) \]