____________________________________________________________________________________
From Mathematica DSolve helps pages.
Solve for \(u(x,y)\) \[ \frac {\partial ^2 u}{\partial x^2} + y \frac {\partial ^2 u}{\partial y^2} =0 \]
With boundary conditions \begin {align*} u(x,0)&=0 \\ \frac {\partial u}{\partial y}(x,0) &= x^2 \end {align*}
Mathematica ✓
ClearAll[u, x, y]; pde = D[u[x, y], {x, 2}] + y*D[u[x, y], {y, 2}] == 0; bc = {u[x, 0] == 0, Derivative[0, 1][u][x, 0] == x^2}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[x, y], {x, y}], 60*10]];
\[ \left \{\left \{u(x,y)\to -y \left (y-x^2\right )\right \}\right \} \]