24 Wave PDE in 2D Polar coordinates

24.1 In circular disk. fixed edge of disk, no \(\theta \) dependency, with initial position and velocity given
24.2 In circular disk. fixed edge of disk, with \(\theta \) dependency, zero initial velocity

____________________________________________________________________________________

24.1 In circular disk. fixed edge of disk, no \(\theta \) dependency, with initial position and velocity given

problem number 164

Taken from Mathematica helps pages on DSolve

Solve for \(u(r,t)\) with \(0<r<1\) and \(t>0\).

\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \left ( \frac {\partial ^2 u}{\partial r^2} + \frac {1}{r} \frac {\partial u}{\partial r} \right ) \]

With boundary conditions

\begin {align*} u(1,t) &=0 \end {align*}

With initial conditions

\begin {align*} u(r,0) &=1 \\ \frac {\partial u}{\partial t}(r,0) &= \frac {r}{3} \end {align*}

Mathematica

ClearAll[u, t, r, n]; 
 pde = D[u[r, t], {t, 2}] == c^2*(D[u[r, t], {r, 2}] + (1*D[u[r, t], r])/r); 
 ic = {u[r, 0] == 1, Derivative[0, 1][u][r, 0] == r/3}; 
 bc = u[1, t] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[r, t], {r, t}], 60*10]]; 
 sol = sol /. K[1] -> n; 
 sol = FullSimplify[sol];
 

\[ \left \{\left \{u(r,t)\to \sum _{n=1}^{\infty }\frac {2 \text {BesselJ}(0,r \text {BesselJZero}(0,n)) \left (9 \sqrt {c^2} \text {BesselJ}(1,\text {BesselJZero}(0,n)) \cos (c t \text {BesselJZero}(0,n))+\text {HypergeometricPFQ}\left (\left \{\frac {3}{2}\right \},\left \{1,\frac {5}{2}\right \},-\frac {1}{4} \text {BesselJZero}(0,n)^2\right ) \sin \left (\sqrt {c^2} t \text {BesselJZero}(0,n)\right )\right )}{9 \sqrt {c^2} \left (\text {BesselJ}(0,\text {BesselJZero}(0,n))^2+\text {BesselJ}(1,\text {BesselJZero}(0,n))^2\right ) \text {BesselJZero}(0,n)}\right \}\right \} \]

Maple

 
x:='x'; t:='t'; y:='y'; u:='u';c:='c'; 
pde := diff(u(r, t), t$2) = c^2*( diff(u(r,t), r$2)+ (1/r)* diff(u(r,t),r)  ) ; 
ic:=u(r,0)=1, eval( diff(u(r,t),t),t=0)=r/3; 
bc:=u(1,t)=0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic,bc], u(r, t)) assuming t>0,r>0,r<1),output='realtime'));
 

\[ u \left ( r,t \right ) =-{\it invlaplace} \left ( {\frac {1}{s}\BesselI \left ( 0,{\frac {sr}{c}} \right ) \left ( \BesselI \left ( 0,{\frac {s}{c}} \right ) \right ) ^{-1}},s,t \right ) -1/3\,{\it invlaplace} \left ( {\frac {1}{{s}^{2}}\BesselI \left ( 0,{\frac {sr}{c}} \right ) \left ( \BesselI \left ( 0,{\frac {s}{c}} \right ) \right ) ^{-1}},s,t \right ) +1/6\,\pi \,c{\it invlaplace} \left ( {\frac {1}{{s}^{3}}\BesselI \left ( 0,{\frac {sr}{c}} \right ) \StruveL \left ( 0,{\frac {s}{c}} \right ) \left ( \BesselI \left ( 0,{\frac {s}{c}} \right ) \right ) ^{-1}},s,t \right ) -1/6\,\pi \,c{\it invlaplace} \left ( {\frac {1}{{s}^{3}}\StruveL \left ( 0,{\frac {sr}{c}} \right ) },s,t \right ) +1+1/3\,tr \] Has unresolved Invlaplace calls

____________________________________________________________________________________

24.2 In circular disk. fixed edge of disk, with \(\theta \) dependency, zero initial velocity

problem number 165

Solve for \(u(r,\theta ,t)\) with \(0<r<a\) and \(t>0\) and \(-\pi <\theta <\pi \)

\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \left ( \frac {\partial ^2 u}{\partial r^2} + \frac {1}{r} \frac {\partial u}{\partial r} +\frac {1}{r^2} \frac {\partial ^2 u}{\partial \theta ^2} \right ) \]

With boundary conditions

\begin {align*} u(a,\theta ,t) &=0 \\ |u(0,\theta ,t)| < \infty \\ u(r,-\pi ,t) &= u(r,\pi ,t) \\ \frac {\partial u}{\partial \theta }(r,-\pi ,t) &= \frac {\partial u}{\partial \theta }(r,\pi ,t)\\ \end {align*}

With initial conditions

\begin {align*} u(r,\theta ,0) &= f(r,\theta ) \\ \frac {\partial u}{\partial t}(r,\theta ,0) &= 0 \end {align*}

Mathematica

ClearAll[u, t, r, n, theta, a, f]; 
 pde = D[u[r, theta, t], {t, 2}] == c^2*(D[u[r, theta, t], {r, 2}] + (1*D[u[r, theta, t], r])/r + (1*D[u[r, theta, t], {theta, 2}])/r^2); 
 ic = {u[r, theta, 0] == f[r, theta], Derivative[0, 0, 1][u][r, theta, 0] == 0}; 
 bc = {u[a, theta, t] == 0, u[r, -Pi, t] == u[r, Pi, t], Derivative[0, 1, 0][u][r, -Pi, t] == Derivative[0, 1, 0][u][r, Pi, t]}; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[r, theta, t], {r, theta, t}, Assumptions -> {0 < r < a, a > 0, t > 0, -Pi < theta < Pi}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
x:='x'; t:='t'; y:='y'; u:='u';theta:='theta'; 
pde := diff(u(r, theta, t), t$2) = c^2*(diff(u(r, theta, t), r$2)  + 1/r*diff(u(r, theta, t), r) + 1/r^2 *diff(u(r, theta, t), theta$2)); 
ic := u(r, theta, 0) = f(r, theta) , (D[3](u))(r, theta, 0) = 0; 
bc := u(a, theta, t) = 0, 
      u(r, -Pi, t) = u(r, Pi, t), 
      (D[2](u))(r, -Pi, t) = (D[2](u))(r, Pi, t); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic,bc], u(r, theta ,t),HINT = boundedseries(r=0))),output='realtime'));
 

\[ \text { sol=() } \]