____________________________________________________________________________________
Added Feb 25, 2019. Exam 1 problem, MATH 4567 Applied Fourier Analysis, University of Minnesota, Twin Cities.
Solve for \(u(x,t)\) \[ u_{tt} = u_{xx} -u \] With boundary condition \begin {align*} u(0,t) &= 0 \\ u(\pi ,t) &=0 \end {align*}
And initial conditions \begin {align*} u(x,0) &= 0 \\ u_t(x,0) &= 1 \\ \end {align*}
Mathematica ✗
ClearAll[u, x, t, k, L]; pde = D[u[x, t], {t, 2}] == D[u[x, t], {x, 2}] - u[x, t]; ic = {u[x, 0] == 0, Derivative[0, 1][u][x, 0] == 1}; bc = {u[0, t] == 0, u[Pi, t] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], {x, t}], 60*10]];
\[ \text {Failed} \]
Maple ✓
x:='x'; t:='t'; u:='u'; pde:=diff(u(x,t),t$2)=diff(u(x,t),x$2)-u(x,t); bc:=u(0,t)=0,u(Pi,t)=0; ic:=u(x,0)=0,eval(diff(u(x,t),t),t=0)=1; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic, bc],u(x,t))),output='realtime'));
\[ u \left ( x,t \right ) =\sum _{n=1}^{\infty }-2\,{\frac { \left ( -1+ \left ( -1 \right ) ^{n} \right ) \sin \left ( nx \right ) \sin \left ( \sqrt {{n}^{2}+1}t \right ) }{\pi \,\sqrt {{n}^{2}+1}n}} \]
____________________________________________________________________________________
Added July 2, 2018. Taken from Maple 2018.1 improvement to PDE document.
Solve \[ -\frac {\partial ^2 u}{\partial t^2} + u(x,t)= \frac {\partial ^2 u}{\partial x^2} + 2 e^{-t} \left ( x - \frac {1}{2} x^2 + \frac {1}{2} t - 1 \right ) \] With boundary condition \begin {align*} u(0,t) &= 0 \\ \frac {\partial u(1,t)}{\partial x} &= 0 \end {align*}
And initial conditions \begin {align*} u(x,0) &= x^2 - 2 x \\ u(x,1) &= u(x,\frac {1}{2}) + e^{-1} \left ( \frac {1}{2} x^2 - x \right ) \\ \end {align*}
Mathematica ✗
ClearAll[u, x, t, k, L]; pde = -D[u[x, t], {t, 2}] + u[x, t] == D[u[x, t], {x, 2}] + 2*Exp[-t]*(x - (1/2)*x^2 + (1/2)*t - 1); bc = {u[0, t] == 0, Derivative[1, 0][u][1, t] == 0}; ic = {u[x, 0] == x^2 - 2*x, u[x, 1] == u[x, 1/2] + ((1/2)*x^2 - x)*Exp[-1] - ((3*x^2)/4 - (3/2)*x)*Exp[-2^(-1)]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], x, t], 60*10]];
\[ \text {Failed} \]
Maple ✓
x:='x'; t:='t'; u:='u'; pde := -diff(u(x, t), t, t) + u(x, t) = diff(u(x, t), x, x)+ 2*exp(-t)*(x-(1/2)*x^2+(1/2)*t-1); ic:= u(x, 0) = x^2-2*x, u(x, 1) = u(x, 1/2)+((1/2)*x^2-x)*exp(-1)-(3/4*(x^2)-3/2*x)*exp(-1/2); bc:= u(0, t) = 0, eval(diff(u(x, t), x), {x = 1}) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic, bc],u(x,t))),output='realtime'));
\[ u \left ( x,t \right ) =-1/2\,{{\rm e}^{-t}}x \left ( -2+x \right ) \left ( t-2 \right ) \]
____________________________________________________________________________________
This is problem at page 28, David J Logan textbook, applied PDE textbook.
\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \frac {\partial ^2 u}{\partial x^2} \]
With boundary condition
\begin {align*} u(0,t) &= 0 \\ u(L,t) &= 0 \end {align*}
Mathematica ✗
ClearAll[u, t, x, L, c]; pde = D[u[x, t], {t, 2}] == c^2*D[u[x, t], {x, 2}]; bc = {u[0, t] == 0, u[L, t] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[x, t], {x, t}, Assumptions -> {L > 0}], 60*10]];
\[ \text {Failed} \]
Maple ✓
x:='x'; t:='t'; L:='L'; c:='c';u:='u'; interface(showassumed=0); pde:=diff(u(x,t),t$2)=c^2*diff(u(x,t),x$2); bc:=u(0,t)=0,u(L,t)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(x,t)) assuming L>0),output='realtime'));
\[ u \left ( x,t \right ) =\sum _{n=1}^{\infty }\sin \left ( {\frac {n\pi \,x}{L}} \right ) \left ( \sin \left ( {\frac {cn\pi \,t}{L}} \right ) {\it \_C1} \left ( n \right ) +\cos \left ( {\frac {cn\pi \,t}{L}} \right ) {\it \_C5} \left ( n \right ) \right ) \]
____________________________________________________________________________________
This is problem at page 130, David J Logan textbook, applied PDE textbook.
\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \frac {\partial ^2 u}{\partial x^2} \]
With boundary conditions
\begin {align*} \frac {\partial u}{\partial x}(L,0) &=0 \\ u(0,t) &= 0 \end {align*}
With initial conditions
\begin {align*} \frac {\partial u}{\partial t}(x,0) &=0 \\ u(x,0) &= f(x) \end {align*}
Mathematica ✗
ClearAll[u, t, x, L, c, f]; pde = D[u[x, t], {t, 2}] == c^2*D[u[x, t], {x, 2}]; bc = {u[0, t] == 0, Derivative[1, 0][u][L, t] == 0}; ic = {Derivative[0, 1][u][x, 0] == 0, u[x, 0] == f[x]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, t], {x, t}, Assumptions -> {0 <= x <= L}], 60*10]];
\[ \text {Failed} \]
Maple ✓
x:='x'; t:='t'; L:='L'; c:='c';u:='u';f:='f'; interface(showassumed=0); pde:=diff(u(x,t),t$2)=c^2*diff(u(x,t),x$2); bc:=u(0,t)=0,D[1](u)(L,t)=0; ic:=D[2](u)(x,0)=0,u(x,0)=f(x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],u(x,t)) assuming L>0),output='realtime'));
\[ u \left ( x,t \right ) =\sum _{n=0}^{\infty } \left ( 2\,{\frac {1}{L}\sin \left ( 1/2\,{\frac { \left ( 1+2\,n \right ) \pi \,x}{L}} \right ) \cos \left ( 1/2\,{\frac {c \left ( 1+2\,n \right ) \pi \,t}{L}} \right ) \int _{0}^{L}\!\sin \left ( 1/2\,{\frac { \left ( 1+2\,n \right ) \pi \,x}{L}} \right ) f \left ( x \right ) \,{\rm d}x} \right ) \]
____________________________________________________________________________________
This is problem at page 149, David J Logan textbook, applied PDE textbook.
\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \frac {\partial ^2 u}{\partial x^2} + p(x,t) \]
With boundary conditions
\begin {align*} u(\pi ,0) &=0 \\ u(0,t) &= 0 \end {align*}
With initial conditions
\begin {align*} \frac {\partial u}{\partial t}(x,0) &=0 \\ u(x,0) &= 0 \end {align*}
Mathematica ✗
ClearAll[u, t, x, c, p]; pde = D[u[x, t], {t, 2}] == c^2*D[u[x, t], {x, 2}] + p[x, t]; bc = {u[0, t] == 0, u[Pi, t] == 0}; ic = {u[x, 0] == 0, Derivative[0, 1][u][x, 0] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, t], {x, t}], 60*10]];
\[ \text {Failed} \]
Maple ✓
x:='x'; t:='t'; L:='L'; c:='c';u:='u';p:='p'; interface(showassumed=0); pde:=diff(u(x,t),t$2)=c^2*diff(u(x,t),x$2)+p(x,t); bc:=u(0,t)=0,u(Pi,t)=0; ic:=u(x,0)=0,D[2](u)(x,0)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],u(x,t))),output='realtime'));
\[ u \left ( x,t \right ) =\int _{0}^{t}\!\sum _{n=1}^{\infty } \left ( 2\,{\frac {\int _{0}^{\pi }\!\sin \left ( nx \right ) p \left ( x,\tau \right ) \,{\rm d}x\sin \left ( nx \right ) \sin \left ( cn \left ( t-\tau \right ) \right ) }{\pi \,nc}} \right ) \,{\rm d}\tau \]
____________________________________________________________________________________
Added Nov 25, 2018.
This is problem 8.5.2 (a), Richard Haberman applied partial differential equations book, 5th edition
Consider a vibrating string with time-dependent forcing: \[ \frac {\partial ^2 u}{\partial t^2} = c^2 \frac {\partial ^2 u}{\partial x^2} + Q(x,t) \]
With boundary conditions
\begin {align*} u(0,t) &=0 \\ u(L,t) &= 0 \end {align*}
With initial conditions
\begin {align*} u_t(x,0) &=0 \\ u(x,0) &= f(x) \end {align*}
Solve the initial value problem.
my hand solution in file feb_24_2019_4_24_pm.tex
, but I need to go over my solution again
to make sure it is correct.
Mathematica ✗
ClearAll[u, t, x, c, Q, L, f]; pde = D[u[x, t], {t, 2}] == c^2*D[u[x, t], {x, 2}] + Q[x, t]; bc = {u[0, t] == 0, u[L, t] == 0}; ic = {u[x, 0] == f[x], Derivative[0, 1][u][x, 0] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, t], {x, t}], 60*10]];
\[ \text {Failed} \]
Maple ✓
x:='x'; t:='t'; L:='L'; c:='c';u:='u';Q:='Q'; interface(showassumed=0); pde:=diff(u(x,t),t$2)=c^2*diff(u(x,t),x$2)+Q(x,t); bc:=u(0,t)=0,u(L,t)=0; ic:=u(x,0)=f(x), eval( diff(u(x,t),t),t=0)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],u(x,t)) assuming L>0),output='realtime'));
\[ u \left ( x,t \right ) =\sum _{n=1}^{\infty } \left ( 2\,{\frac {1}{L}\int _{0}^{L}\!\sin \left ( {\frac {\pi \,n\tau }{L}} \right ) f \left ( \tau \right ) \,{\rm d}\tau \sin \left ( {\frac {n\pi \,x}{L}} \right ) \cos \left ( {\frac {\pi \,nct}{L}} \right ) } \right ) +\int _{0}^{t}\!\sum _{n=1}^{\infty } \left ( 2\,{\frac {1}{\pi \,nc}\int _{0}^{L}\!\sin \left ( {\frac {n\pi \,x}{L}} \right ) Q \left ( x,\tau \right ) \,{\rm d}x\sin \left ( {\frac {n\pi \,x}{L}} \right ) \sin \left ( {\frac {\pi \,nc \left ( t-\tau \right ) }{L}} \right ) } \right ) \,{\rm d}\tau \]
____________________________________________________________________________________
Added Nov 25, 2018.
This is problem 8.5.2 (b), Richard Haberman applied partial differential equations book, 5th edition
Consider a vibrating string with time-dependent forcing: \[ u_{tt} = c^2 u_{xx} + g(x) \cos (\omega t) \]
With boundary conditions
\begin {align*} u(0,t) &=0 \\ u(L,t) &= 0 \end {align*}
With initial conditions
\begin {align*} u_t(x,0) &=0 \\ u(x,0) &= f(x) \end {align*}
Solve the initial value problem.
See my solution at HW 9, Math 322. UW Madison.
Mathematica ✗
ClearAll[u, t, x, c, Q, L, f, g, w]; pde = D[u[x, t], {t, 2}] == c^2*D[u[x, t], {x, 2}] + g[x]*Cos[w*t]; bc = {u[0, t] == 0, u[L, t] == 0}; ic = {u[x, 0] == f[x], Derivative[0, 1][u][x, 0] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, t], {x, t}], 60*10]];
\[ \text {Failed} \]
Maple ✓
x:='x'; t:='t'; L:='L'; c:='c';u:='u';g:='Q';w:='w'; interface(showassumed=0); pde:=diff(u(x,t),t$2)=c^2*diff(u(x,t),x$2)+ g(x)*cos(w*t); bc:=u(0,t)=0,u(L,t)=0; ic:=u(x,0)=0, eval( diff(u(x,t),t),t=0)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],u(x,t)) assuming L>0),output='realtime'));
\[ \text {Bad latex generated} \]
Hand solution
Let \[ u\left ( x,t\right ) =\sum _{n=1}^{\infty }A_{n}\left ( t\right ) \phi _{n}\left ( x\right ) \] Where we used \(=\) instead of \(\sim \) above, since the PDE given has homogeneous B.C. We know that \(\phi _{n}\left ( x\right ) =\sin \left ( \sqrt {\lambda _{n}}x\right ) \) for \(n=1,2,3,\cdots \) where \(\lambda _{n}=\left ( \frac {n\pi }{L}\right ) ^{2}\). Substituting the above in the given PDE gives\[ \sum _{n=1}^{\infty }A_{n}^{\prime \prime }\left ( t\right ) \phi _{n}\left ( x\right ) =c^{2}\sum _{n=1}^{\infty }A_{n}\left ( t\right ) \frac {d^{2}\phi _{n}\left ( x\right ) }{dx^{2}}+Q\left ( x,t\right ) \] But \(Q\left ( x,t\right ) =\sum _{n=1}^{\infty }q_{n}\left ( t\right ) \phi _{n}\left ( x\right ) \), hence the above becomes\[ \sum _{n=1}^{\infty }A_{n}^{\prime \prime }\left ( t\right ) \phi _{n}\left ( x\right ) =c^{2}\sum _{n=1}^{\infty }A_{n}\left ( t\right ) \frac {d^{2}\phi _{n}\left ( x\right ) }{dx^{2}}+\sum _{n=1}^{\infty }g_{n}\left ( t\right ) \phi _{n}\left ( x\right ) \] But \(\frac {d^{2}\phi _{n}\left ( x\right ) }{dx^{2}}=-\lambda _{n}\phi _{n}\left ( x\right ) \), hence\[ \sum _{n=1}^{\infty }A_{n}^{\prime \prime }\left ( t\right ) \phi _{n}\left ( x\right ) =-c^{2}\sum _{n=1}^{\infty }\lambda _{n}A_{n}\left ( t\right ) \phi _{n}\left ( x\right ) +\sum _{n=1}^{\infty }g_{n}\left ( t\right ) \phi _{n}\left ( x\right ) \] Multiplying both sides by \(\phi _{m}\left ( x\right ) \) and integrating gives\begin {align*} \int _{0}^{L}\sum _{n=1}^{\infty }A_{n}^{\prime \prime }\left ( t\right ) \phi _{m}\left ( x\right ) \phi _{n}\left ( x\right ) dx & =-c^{2}\int _{0}^{L}\sum _{n=1}^{\infty }\lambda _{n}A_{n}\left ( t\right ) \phi _{m}\left ( x\right ) \phi _{n}\left ( x\right ) dx+\int _{0}^{L}\sum _{n=1}^{\infty }g_{n}\left ( t\right ) \phi _{m}\left ( x\right ) \phi _{n}\left ( x\right ) dx\\ A_{n}^{\prime \prime }\left ( t\right ) \int _{0}^{L}\phi _{n}^{2}\left ( x\right ) dx & =-c^{2}\lambda _{n}A_{n}\left ( t\right ) \int _{0}^{L}\phi _{n}^{2}\left ( x\right ) dx+g_{n}\left ( t\right ) \int _{0}^{L}\phi _{n}^{2}\left ( x\right ) dx \end {align*}
Hence\[ A_{n}^{\prime \prime }\left ( t\right ) +c^{2}\lambda _{n}A_{n}\left ( t\right ) =g_{n}\left ( t\right ) \] Now we solve the above ODE. Let solution be \[ A_{n}\left ( t\right ) =A_{n}^{h}\left ( t\right ) +A_{n}^{p}\left ( t\right ) \] Which is the sum of the homogenous and particular solutions. The homogenous solution is \[ A_{n}^{h}\left ( t\right ) =c_{1_{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) +c_{2_{n}}\sin \left ( c\sqrt {\lambda _{n}}t\right ) \] And the particular solution depends on \(q_{n}\left ( t\right ) \). Once we find \(q_{n}\left ( t\right ) \), we plug-in everything back into \(u\left ( x,t\right ) =\sum _{n=1}^{\infty }A_{n}\left ( t\right ) \phi _{n}\left ( x\right ) \) and then use initial conditions to find \(c_{1_{n}},c_{2_{n}}\), the two constant of integrations. Now we are given that \(Q\left ( x,t\right ) =g\left ( x\right ) \cos \left ( \omega t\right ) \). Hence\[ g_{n}\left ( t\right ) =\frac {\int _{0}^{L}Q\left ( x,t\right ) \phi _{n}\left ( x\right ) dx}{\int _{0}^{L}\phi _{n}^{2}\left ( x\right ) dx}=\frac {\cos \left ( \omega t\right ) \int _{0}^{L}g\left ( x\right ) \phi _{n}\left ( x\right ) dx}{\int _{0}^{L}\phi _{n}^{2}\left ( x\right ) dx}=\cos \left ( \omega t\right ) \gamma _{n}\] Where\[ \gamma _{n}=\frac {\int _{0}^{L}g\left ( x\right ) \phi _{n}\left ( x\right ) dx}{\int _{0}^{L}\phi _{n}^{2}\left ( x\right ) dx}\] is constant that depends on \(n\). Now we use the above in result found in part (a)\begin {equation} A_{n}^{\prime \prime }\left ( t\right ) +c^{2}\lambda _{n}A_{n}\left ( t\right ) =\gamma _{n}\cos \left ( \omega t\right ) \tag {1} \end {equation} We know the homogenous solution from part (a). \[ A_{n}^{h}\left ( t\right ) =c_{1_{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) +c_{2_{n}}\sin \left ( c\sqrt {\lambda _{n}}t\right ) \] We now need to find the particular solution. Will solve using method of undetermined coefficients.
Case 1 \(\omega \neq c\sqrt {\lambda _{n}}\) (no resonance)
We can now guess \[ A_{n}^{p}\left ( t\right ) =z_{1}\cos \left ( \omega t\right ) +z_{2}\sin \left ( \omega t\right ) \] Plugging this back into (1) gives\begin {align*} \left ( z_{1}\cos \left ( \omega t\right ) +z_{2}\sin \left ( \omega t\right ) \right ) ^{\prime \prime }+c^{2}\lambda _{n}\left ( z_{1}\cos \left ( \omega t\right ) +z_{2}\sin \left ( \omega t\right ) \right ) & =\gamma _{n}\cos \left ( \omega t\right ) \\ \left ( -\omega z_{1}\sin \left ( \omega t\right ) +\omega z_{2}\cos \left ( \omega t\right ) \right ) ^{\prime }+c^{2}\lambda _{n}\left ( z_{1}\cos \left ( \omega t\right ) +z_{2}\sin \left ( \omega t\right ) \right ) & =\gamma _{n}\cos \left ( \omega t\right ) \\ -\omega ^{2}z_{1}\cos \left ( \omega t\right ) -\omega ^{2}z_{2}\sin \left ( \omega t\right ) +c^{2}\lambda _{n}\left ( z_{1}\cos \left ( \omega t\right ) +z_{2}\sin \left ( \omega t\right ) \right ) & =\gamma _{n}\cos \left ( \omega t\right ) \end {align*}
Collecting terms\[ \cos \left ( \omega t\right ) \left ( -\omega ^{2}z_{1}+c^{2}\lambda _{n}z_{1}\right ) +\sin \left ( \omega t\right ) \left ( -\omega ^{2}z_{2}+c^{2}\lambda _{n}z_{2}\right ) =\gamma _{n}\cos \left ( \omega t\right ) \] Therefore we obtain two equations in two unknowns\begin {align*} -\omega ^{2}z_{1}+c^{2}\lambda _{n}z_{1} & =\gamma _{n}\\ -\omega ^{2}z_{2}+c^{2}\lambda _{n}z_{2} & =0 \end {align*}
From the second equation, \(z_{2}=0\) and from the first equation\begin {align*} z_{1}\left ( c^{2}\lambda _{n}-\omega ^{2}\right ) & =\gamma _{n}\\ z_{1} & =\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}} \end {align*}
Hence \begin {align*} A_{n}^{p}\left ( t\right ) & =z_{1}\cos \left ( \omega t\right ) +z_{2}\sin \left ( \omega t\right ) \\ & =\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\cos \left ( \omega t\right ) \end {align*}
Therefore\begin {align*} A_{n}\left ( t\right ) & =A_{n}^{h}\left ( t\right ) +A_{n}^{p}\left ( t\right ) \\ & =c_{1_{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) +c_{2_{n}}\sin \left ( c\sqrt {\lambda _{n}}t\right ) +\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\cos \left ( \omega t\right ) \end {align*}
Now we need to find \(c_{1_{n}},c_{2_{n}}\). Since\begin {align*} u\left ( x,t\right ) & =\sum _{n=1}^{\infty }A_{n}\left ( t\right ) \phi _{n}\left ( x\right ) \\ & =\sum _{n=1}^{\infty }\left ( c_{1_{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) +c_{2_{n}}\sin \left ( c\sqrt {\lambda _{n}}t\right ) +\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\cos \left ( \omega t\right ) \right ) \sin \left ( \frac {n\pi }{L}x\right ) \end {align*}
At \(t=0\) the above becomes\begin {align*} f\left ( x\right ) & =\sum _{n=1}^{\infty }\left ( c_{1_{n}}+\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\right ) \sin \left ( \frac {n\pi }{L}x\right ) \\ & =\sum _{n=1}^{\infty }c_{1_{n}}\sin \left ( \frac {n\pi }{L}x\right ) +\sum _{n=1}^{\infty }\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\sin \left ( \frac {n\pi }{L}x\right ) \end {align*}
Applying orthogonality\begin {align*} \int _{0}^{L}f\left ( x\right ) \sin \left ( \frac {m\pi }{L}x\right ) dx & =\int _{0}^{L}\sum _{n=1}^{\infty }c_{1_{n}}\sin \left ( \frac {n\pi }{L}x\right ) \sin \left ( \frac {m\pi }{L}x\right ) dx+\int _{0}^{L}\sum _{n=1}^{\infty }\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\sin \left ( \frac {n\pi }{L}x\right ) \sin \left ( \frac {m\pi }{L}x\right ) dx\\ \int _{0}^{L}f\left ( x\right ) \sin \left ( \frac {m\pi }{L}x\right ) dx & =c_{1_{n}}\int _{0}^{L}\sin ^{2}\left ( \frac {n\pi }{L}x\right ) dx+\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\int _{0}^{L}\sin ^{2}\left ( \frac {n\pi }{L}x\right ) dx \end {align*}
Rearranging\begin {align*} \int _{0}^{L}f\left ( x\right ) \sin \left ( \frac {m\pi }{L}x\right ) dx-\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\int _{0}^{L}\sin ^{2}\left ( \frac {n\pi }{L}x\right ) dx & =c_{1_{n}}\int _{0}^{L}\sin ^{2}\left ( \frac {n\pi }{L}x\right ) dx\\ c_{1_{n}} & =\frac {\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac {m\pi }{L}x\right ) dx}{\int _{0}^{L}\sin ^{2}\left ( \frac {n\pi }{L}x\right ) dx}-\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\\ & =\frac {2}{L}\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac {m\pi }{L}x\right ) dx-\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}} \end {align*}
We now need to find \(c_{2_{n}}\). For this we need to differentiate the solution once.\[ \frac {\partial u\left ( x,t\right ) }{\partial t}=\sum _{n=1}^{\infty }\left ( -c\sqrt {\lambda _{n}}c_{1_{n}}\sin \left ( c\sqrt {\lambda _{n}}t\right ) +c\sqrt {\lambda _{n}}c_{2_{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) -\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\omega \sin \left ( \omega t\right ) \right ) \sin \left ( \frac {n\pi }{L}x\right ) \] Applying initial conditions \(\frac {\partial u\left ( x,0\right ) }{\partial t}=0\) gives\[ 0=\sum _{n=1}^{\infty }c\sqrt {\lambda _{n}}c_{2_{n}}\sin \left ( \frac {n\pi }{L}x\right ) \] Hence \[ c_{2_{n}}=0 \] Therefore the final solution is\[ A_{n}\left ( t\right ) =c_{1_{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) +\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\cos \left ( \omega t\right ) \] And\[ u\left ( x,t\right ) =\sum _{n=1}^{\infty }A_{n}\left ( t\right ) \sin \left ( \frac {n\pi }{L}x\right ) \] Where \[ c_{1_{n}}=\frac {2}{L}\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac {m\pi }{L}x\right ) dx-\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\] Case 2 \(\omega =c\sqrt {\lambda _{n}}\) Resonance case. Now we can’t guess \(A_{n}^{p}\left ( t\right ) =z_{1}\cos \left ( \omega t\right ) +z_{2}\sin \left ( \omega t\right ) \) so we have to use \[ A_{n}^{p}\left ( t\right ) =z_{1}t\cos \left ( \omega t\right ) +z_{2}t\sin \left ( \omega t\right ) \] Substituting this in \(A_{n}^{\prime \prime }\left ( t\right ) +c^{2}\lambda _{n}A_{n}\left ( t\right ) =\gamma _{n}\cos \left ( \omega t\right ) \) gives\begin {equation} \left ( z_{1}t\cos \left ( \omega t\right ) +z_{2}t\sin \left ( \omega t\right ) \right ) ^{\prime \prime }+c^{2}\lambda _{n}\left ( z_{1}t\cos \left ( \omega t\right ) +z_{2}t\sin \left ( \omega t\right ) \right ) =\gamma _{n}\cos \left ( \omega t\right ) \tag {2} \end {equation} But \begin {align*} \left ( z_{1}t\cos \left ( \omega t\right ) +z_{2}t\sin \left ( \omega t\right ) \right ) ^{\prime \prime } & =\left ( z_{1}\cos \left ( \omega t\right ) -z_{1}\omega t\sin \left ( \omega t\right ) +z_{2}\sin \left ( \omega t\right ) +z_{2}\omega t\cos \left ( \omega t\right ) \right ) ^{\prime }\\ & =-z_{1}\omega \sin \left ( \omega t\right ) -\left ( z_{1}\omega \sin \left ( \omega t\right ) +z_{1}\omega ^{2}t\cos \left ( \omega t\right ) \right ) \\ & +z_{2}\omega \cos \left ( \omega t\right ) +\left ( z_{2}\omega \cos \left ( \omega t\right ) -z_{2}\omega ^{2}t\sin \left ( \omega t\right ) \right ) \\ & =-2z_{1}\omega \sin \left ( \omega t\right ) -z_{1}\omega ^{2}t\cos \left ( \omega t\right ) +2z_{2}\omega \cos \left ( \omega t\right ) -z_{2}\omega ^{2}t\sin \left ( \omega t\right ) \end {align*}
Hence (2) becomes\[ -2z_{1}\omega \sin \left ( \omega t\right ) -z_{1}\omega ^{2}t\cos \left ( \omega t\right ) +2z_{2}\omega \cos \left ( \omega t\right ) -z_{2}\omega ^{2}t\sin \left ( \omega t\right ) +c^{2}\lambda _{n}\left ( z_{1}t\cos \left ( \omega t\right ) +z_{2}t\sin \left ( \omega t\right ) \right ) =\gamma _{n}\cos \left ( \omega t\right ) \] Comparing coefficients we see that \(2z_{2}\omega =\gamma _{n}\) or \[ z_{2}=\frac {\gamma _{n}}{2\omega }\] And \(z_{1}=0\). Therefore \[ A_{n}^{p}\left ( t\right ) =\frac {\gamma _{n}}{2\omega }t\sin \left ( \omega t\right ) \] Therefore\begin {align*} A_{n}\left ( t\right ) & =A_{n}^{h}\left ( t\right ) +A_{n}^{p}\left ( t\right ) \\ & =c_{1_{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) +c_{2_{n}}\sin \left ( c\sqrt {\lambda _{n}}t\right ) +\frac {\gamma _{n}}{2c\sqrt {\lambda _{n}}}t\sin \left ( \omega t\right ) \end {align*}
We now can find \(c_{1_{n}},c_{2_{n}}\) from initial conditions.\begin {align} u\left ( x,t\right ) & =\sum _{n=1}^{\infty }A_{n}\left ( t\right ) \phi _{n}\left ( x\right ) \nonumber \\ & =\sum _{n=1}^{\infty }\left ( c_{1_{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) +c_{2_{n}}\sin \left ( c\sqrt {\lambda _{n}}t\right ) +\frac {\gamma _{n}}{2c\sqrt {\lambda _{n}}}t\sin \left ( \omega t\right ) \right ) \sin \left ( \frac {n\pi }{L}x\right ) \tag {4} \end {align}
At \(t=0\)\begin {align*} f\left ( x\right ) & =\sum _{n=1}^{\infty }c_{1_{n}}\sin \left ( \frac {n\pi }{L}x\right ) \\ c_{1n} & =\frac {2}{L}\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac {n\pi }{L}x\right ) dx \end {align*}
Taking time derivative of (4) and setting it to zero will give \(c_{2n}\). Since initial speed is zero then \(c_{2_{n}}=0\). Hence\[ A_{n}\left ( t\right ) =c_{1_{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) +\frac {\gamma _{n}}{2c\sqrt {\lambda _{n}}}t\sin \left ( \omega t\right ) \] This completes the solution.
Summary of solution
The solution is given by\[ u\left ( x,t\right ) =\sum _{n=1}^{\infty }A_{n}\left ( t\right ) \phi _{n}\left ( x\right ) \] Case \(\omega \neq c\sqrt {\lambda _{n}}\)\[ A_{n}\left ( t\right ) =c_{1_{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) +\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\cos \left ( \omega t\right ) \] And\[ c_{1_{n}}=\frac {2}{L}\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac {m\pi }{L}x\right ) dx-\frac {\gamma _{n}}{c^{2}\lambda _{n}-\omega ^{2}}\] And\[ \gamma _{n}=\frac {\int _{0}^{L}g\left ( x\right ) \phi _{n}\left ( x\right ) dx}{\int _{0}^{L}\phi _{n}^{2}\left ( x\right ) dx}\] And \(\lambda _{n}=\left ( \frac {n\pi }{L}\right ) ^{2},n=1,2,3,\)
Case \(\omega =c\sqrt {\lambda _{n}}\) (resonance)\[ A_{n}\left ( t\right ) =c_{1_{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) +\frac {\gamma _{n}}{2c\sqrt {\lambda _{n}}}t\sin \left ( \omega t\right ) \] And\[ c_{1_{n}}=\frac {2}{L}\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac {n\pi }{L}x\right ) dx \]
____________________________________________________________________________________
Added July 2, 2018.
Taken from Maple 2018.1 improvements to PDE’s document.
Solve
\[ \frac {\partial ^2 v}{\partial t^2} = \frac {\partial ^2 v}{\partial x^2} \]
For \(t>0\) and \(0<x<1\). With boundary conditions
\begin {align*} v(0,t)&=0\\ v(1,0)&=0 \end {align*}
With initial conditions
\begin {align*} v( x,0) & =f(x) \\ \frac {\partial v}{\partial t}(x,0) &=g(x) \\ \end {align*}
Where \(f(x)=-{\frac {{{\rm e}^{2}}x-{{\rm e}^{x+1}}-x+{{\rm e}^{1-x}}}{{{\rm e}^{2}}-1}}\) and \(g(x)=1+{\frac {{{\rm e}^{2}}x-{{\rm e}^{x+1}}-x+{{\rm e}^{1-x}}}{{{\rm e}^{2}}-1}}\)
Mathematica ✓
ClearAll[v, t, t]; pde = D[v[x, t], {t, 2}] == D[v[x, t], {x, 2}]; bc = {v[0, t] == 0, v[1, t] == 0}; ic = {v[x, 0] == -((Exp[2]*x - Exp[x + 1] - x + Exp[1 - x])/(Exp[2] - 1)), Derivative[0, 1][v][x, 0] == 1 + (Exp[2]*x - Exp[x + 1] - x + Exp[1 - x])/(Exp[2] - 1)}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, v[x, t], {x, t}], 60*10]]; sol = sol /. K[1] -> n;
\[ \left \{\left \{v(x,t)\to \sum _{n=1}^{\infty }\left (\frac {2 (-1)^n \cos (n \pi t)}{\pi ^3 n^3+\pi n}+\frac {\left (-2 \left (-1+(-1)^n\right ) \pi ^2 n^2-4 (-1)^n+2\right ) \sin (n \pi t)}{\pi ^4 n^4+\pi ^2 n^2}\right ) \sin (n \pi x)\right \}\right \} \]
Maple ✓
v:='v';x:='x';t:='t'; pde := diff(v(x, t), t, t)=(diff(v(x, t), x, x)); bc := v(0, t) = 0, v(1, t) = 0; ic:= v(x, 0) = -(exp(2)*x-exp(x+1)-x+exp(1-x))/(exp(2)-1), (D[2](v))(x, 0) = 1+(exp(2)*x-exp(x+1)-x+exp(1-x))/(exp(2)-1); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde,ic,bc],v(x,t))),output='realtime'));
\[ v \left ( x,t \right ) =\sum _{n=1}^{\infty }-2\,{\frac {\sin \left ( n\pi \,x \right ) \left ( \left ( {\pi }^{2} \left ( -1 \right ) ^{n}{n}^{2}-{\pi }^{2}{n}^{2}+2\, \left ( -1 \right ) ^{n}-1 \right ) \sin \left ( n\pi \,t \right ) - \left ( -1 \right ) ^{n}\cos \left ( n\pi \,t \right ) \pi \,n \right ) }{{\pi }^{2}{n}^{2} \left ( {\pi }^{2}{n}^{2}+1 \right ) }} \]
____________________________________________________________________________________
Added July 2, 2018.
Third example, from Maple 2018.1 improvements to PDE’s document.
Solve
\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \frac {\partial ^2 u}{\partial x^2} + 1 \]
For \(t>0\) and \(0<x<L\). With boundary conditions
\begin {align*} u(0,t)&=0\\ u(L,0)&=0 \end {align*}
With initial conditions
\begin {align*} u ( x,0) & =f(x) \\ \frac {\partial u}{\partial t}(x,0) &=g(x) \\ \end {align*}
Mathematica ✗
ClearAll[u, t, x, c, L, f, g]; pde = D[u[x, t], {t, 2}] == c^2*D[u[x, t], {x, 2}] + 1; bc = {u[0, t] == 0, u[L, t] == 0}; ic = {u[x, 0] == f[x], Derivative[0, 1][u][x, 0] == g[x]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, t], {x, t}, Assumptions -> L > 0], 60*10]];
\[ \text {Failed} \]
Maple ✓
interface(showassumed=0); x:='x';t:='t';a:='a';f='f';L:='L';g:='g'; pde :=diff(u(x, t), t, t) = c^2* diff(u(x, t), x, x) + 1 ; bc := u(0, t) = 0, u(L, t) = 0; ic:= u(x, 0) = f(x), (D[2](u))(x, 0) = g(x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde, ic, bc],u(x,t)) assuming L>0),output='realtime'));
\[ u \left ( x,t \right ) =1/2\,{\frac {1}{{c}^{2}} \left ( 2\,\sum _{n=1}^{\infty } \left ( {\frac {1}{\pi \,n{c}^{2}L}\sin \left ( {\frac {n\pi \,x}{L}} \right ) \left ( 2\,L\sin \left ( {\frac {\pi \,nct}{L}} \right ) \int _{0}^{L}\!\sin \left ( {\frac {n\pi \,x}{L}} \right ) g \left ( x \right ) \,{\rm d}xc-\pi \,\cos \left ( {\frac {\pi \,nct}{L}} \right ) \int _{0}^{L}\!\sin \left ( {\frac {n\pi \,x}{L}} \right ) \left ( -2\,f \left ( x \right ) {c}^{2}+Lx-{x}^{2} \right ) \,{\rm d}xn \right ) } \right ) {c}^{2}+Lx-{x}^{2} \right ) } \]
____________________________________________________________________________________
This is problem at page 213, David J Logan textbook, applied PDE textbook.
\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \frac {\partial ^2 u}{\partial x^2} + A x \]
With boundary conditions
\begin {align*} u(L,0) &=0 \\ u(0,t) &= 0 \end {align*}
With initial conditions
\begin {align*} \frac {\partial u}{\partial t}(x,0) &=0 \\ u(x,0) &= 0 \end {align*}
Mathematica ✗
ClearAll[u, t, x, c, A, L]; pde = D[u[x, t], {t, 2}] == c^2*D[u[x, t], {x, 2}] + A*x; bc = {u[0, t] == 0, u[L, t] == 0}; ic = {u[x, 0] == 0, Derivative[0, 1][u][x, 0] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, t], {x, t}], 60*10]];
\[ \text {Failed} \]
Maple ✓
x:='x'; t:='t'; L:='L';c:='c';u:='u';A:='A'; interface(showassumed=0); pde:=diff(u(x,t),t$2)=c^2*diff(u(x,t),x$2)+A* x; bc:=u(0,t)=0,u(L,t)=0; ic:=u(x,0)=0,D[2](u)(x,0)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde,bc,ic],u(x,t)) assuming L>0),output='realtime'));
\[ u \left ( x,t \right ) =1/6\,{\frac {1}{{c}^{2}} \left ( A{L}^{2}x-A{x}^{3}+6\,\sum _{n=1}^{\infty }2\,{\frac {{L}^{3} \left ( -1 \right ) ^{n}A}{{n}^{3}{\pi }^{3}{c}^{2}}\sin \left ( {\frac {n\pi \,x}{L}} \right ) \cos \left ( {\frac {\pi \,nct}{L}} \right ) }{c}^{2} \right ) } \]
____________________________________________________________________________________
Solve \[ \frac {\partial ^2 u}{\partial t^2} + 2 \frac {\partial u}{\partial t} = c^2 \frac {\partial ^2 u}{\partial x^2} \]
With boundary conditions
\begin {align*} u(0,t) &= 0\\ u(\pi ,0) &=0 \end {align*}
With initial conditions
\begin {align*} \frac {\partial u}{\partial t}(x,0) &=0 \\ u(x,0) &= f(x) \end {align*}
Mathematica ✗
pde = D[u[x, t], {t, 2}] + 2*D[u[x, t], t] == D[u[x, t], {x, 2}]; bc = {u[0, t] == 0, u[Pi, t] == 0}; ic = {Derivative[0, 1][u][x, 0] == 0, u[x, 0] == f[x]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, t], x, t], 60*10]];
\[ \text {Failed} \]
Maple ✓
x:='x'; t:='t'; L:='L'; c:='c';u:='u';f:='f'; interface(showassumed=0); pde:=diff(u(x,t),t$2)+2*diff(u(x,t),t)=diff(u(x,t),x$2); ic:=D[2](u)(x,0)=0,u(0,t)=0,u(x,0)=f(x); bc:=u(0,t)=0,u(Pi,t)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde,ic,bc],u(x,t)) assuming t>0),output='realtime'));
\[ u \left ( x,t \right ) =\sum _{n=1}^{\infty } \left ( {\frac {\int _{0}^{\pi }\!\sin \left ( nx \right ) f \left ( x \right ) \,{\rm d}x\sin \left ( nx \right ) \left ( \left ( -1+\sqrt {-{n}^{2}+1} \right ) {{\rm e}^{- \left ( \sqrt {-{n}^{2}+1}+1 \right ) t}}+{{\rm e}^{ \left ( -1+\sqrt {-{n}^{2}+1} \right ) t}} \left ( \sqrt {-{n}^{2}+1}+1 \right ) \right ) }{\sqrt {-{n}^{2}+1}\pi }} \right ) \] But \(n = 1\) should not be included.
____________________________________________________________________________________
Solve \[ \frac {1}{a^2} \frac {\partial ^2 u}{\partial t^2} + \gamma ^2 u(x,t) = c^2 \frac {\partial ^2 u}{\partial x^2} \]
Dispersion term \(\gamma ^2 u(x,t)\) causes the shape of the original wave to distort with time.
With \(0<x<\pi \) and \(t>0\) and with boundary conditions
\begin {align*} u(0,t) &= 0\\ u(\pi ,0) &=0 \end {align*}
With initial conditions
\begin {align*} \frac {\partial u}{\partial t}(x,0) &=0 \\ u(x,0) &= \sin ^2(x) \end {align*}
Mathematica ✗
ClearAll[a, u, x, t, gamma]; pde = (1*D[u[x, t], {t, 2}])/a^2 + gamma^2*u[x, t] == D[u[x, t], {x, 2}]; bc = {u[0, t] == 0, u[Pi, t] == 0}; ic = {Derivative[0, 1][u][x, 0] == 0, u[x, 0] == Sin[x]^2}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, t], {x, t}], 60*10]];
\[ \text {Failed} \] Due to adding dispersion term
Maple ✓
x:='x'; t:='t'; L:='L'; c:='c';u:='u';f:='f';a:='a';g:='g'; interface(showassumed=0); pde:=1/a^2*diff(u(x,t),t$2)+g^2*u(x,t)=diff(u(x,t),x$2); bc:=u(0,t)=0,u(Pi,t)=0; ic:=u(x,0)=sin(x)^2,(D[2](u))(x,0)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],u(x,t))),output='realtime'));
\[ u \left ( x,t \right ) =1/3\,{\frac {1}{\pi } \left ( 3\,\sum _{n=3}^{\infty }4\,{\frac {\sin \left ( nx \right ) \cos \left ( a\sqrt {{g}^{2}+{n}^{2}}t \right ) \left ( -1+ \left ( -1 \right ) ^{n} \right ) }{\pi \,n \left ( {n}^{2}-4 \right ) }}\pi +8\,\sin \left ( x \right ) \cos \left ( a\sqrt {{g}^{2}+1}t \right ) \right ) } \]
____________________________________________________________________________________
Added March 9, 2018.
Solve \[ \frac {\partial ^2 u}{\partial t^2} = 4 \frac {\partial ^2 u}{\partial x^2} \]
With boundary conditions
\begin {align*} u(0,t) &= 0\\ u(\pi ,0) &=0 \end {align*}
With initial conditions
\begin {align*} \frac {\partial u}{\partial t}(x,0) &=0 \\ u(x,0) &= \sin ^2(x) \end {align*}
Mathematica ✓
ClearAll[u, t, x, n]; pde = D[u[x, t], {t, 2}] == 4*D[u[x, t], {x, 2}]; ic = {Derivative[0, 1][u][x, 0] == 0, u[x, 0] == Sin[x]^2}; bc = {u[0, t] == 0, u[Pi, t] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, t], {x, t}], 60*10]]; sol = sol /. K[1] -> n;
\[ \left \{\left \{u(x,t)\to \sum _{n=1}^{\infty }\frac {4 (\cos (n \pi )-1) \cos (2 n t) \sin (n x)}{\left (n^3-4 n\right ) \pi }\right \}\right \} \] But sum should not include \(n=2\)
Maple ✓
x:='x'; t:='t'; L:='L'; c:='c';u:='u'; interface(showassumed=0); pde:=diff(u(x,t),t$2)= 4*diff(u(x,t),x$2); bc:=u(0,t)=0,u(Pi,t)=0; ic:=u(x,0)=sin(x)^2,D[2](u)(x,0)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],u(x,t))),output='realtime'));
\[ u \left ( x,t \right ) =1/3\,{\frac {1}{\pi } \left ( 3\,\sum _{n=3}^{\infty }4\,{\frac {\sin \left ( nx \right ) \cos \left ( 2\,nt \right ) \left ( -1+ \left ( -1 \right ) ^{n} \right ) }{\pi \,n \left ( {n}^{2}-4 \right ) }}\pi +8\,\sin \left ( x \right ) \cos \left ( 2\,t \right ) \right ) } \] Handled \(n=2\) case correctly
____________________________________________________________________________________
Added December 20, 2018.
Example 18, Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018
Solve for \(u(x,t)\) with \(0<x<1\) and \(t>0\) \[ \frac {\partial ^2 u}{\partial t^2} = \frac {\partial ^2 u}{\partial x^2} + x e^{-t} \]
With boundary conditions
\begin {align*} u(0,t) &= 0\\ u(1,0) &=0 \end {align*}
With initial conditions
\begin {align*} u(x,0) &= 0\\ \frac {\partial u}{\partial t}(x,0) &=1 \end {align*}
Mathematica ✗
ClearAll[u, t, x]; pde = D[u[x, t], {t, 2}] == D[u[x, t], {x, 2}] + x*Exp[-t]; ic = {u[x, 0] == 0, Derivative[0, 1][u][x, 0] == 0}; bc = {u[0, t] == 0, u[1, t] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, t], {x, t}], 60*10]];
\[ \text {Failed} \]
Maple ✓
x:='x'; t:='t'; u:='u'; pde := diff(u(x, t), t$2) = diff(u(x, t), x$2)+x*exp(-t); bc := u(0,t)=0,u(1,t)=0; ic := u(x,0)=0,eval(diff(u(x,t),t),t=0)=1; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, bc,ic],u(x,t))),output='realtime'));
\[ u \left ( x,t \right ) =\sum _{n=1}^{\infty }{\frac { \left ( -{\pi }^{2} \left ( -1 \right ) ^{n}{n}^{2}+{\pi }^{2}{n}^{2}+2\, \left ( -1 \right ) ^{1+n}+1 \right ) \cos \left ( \pi \,n \left ( -x+t \right ) \right ) -\pi \, \left ( -1 \right ) ^{n}n\sin \left ( \pi \,n \left ( -x+t \right ) \right ) + \left ( {\pi }^{2} \left ( -1 \right ) ^{n}{n}^{2}-{\pi }^{2}{n}^{2}+2\, \left ( -1 \right ) ^{n}-1 \right ) \cos \left ( \pi \,n \left ( x+t \right ) \right ) +\pi \,n \left ( 2\,{{\rm e}^{-t}} \left ( -1 \right ) ^{1+n}\sin \left ( n\pi \,x \right ) +\sin \left ( \pi \,n \left ( x+t \right ) \right ) \left ( -1 \right ) ^{n} \right ) }{{\pi }^{2}{n}^{2} \left ( {\pi }^{2}{n}^{2}+1 \right ) }} \]
____________________________________________________________________________________
Added December 20, 2018.
Example 19, Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018
Solve for \(u(x,t)\) with \(0<x<\pi \) and \(t>0\) \[ \frac {\partial ^2 u}{\partial t^2} = 4 \frac {\partial ^2 u}{\partial x^2} + (1+t) x \]
With boundary conditions
\begin {align*} u(0,t) &= 0\\ u(\pi ,0) &=\sin (t) \end {align*}
With initial conditions
\begin {align*} u(x,0) &= 0\\ \frac {\partial u}{\partial t}(x,0) &=0 \end {align*}
Mathematica ✗
ClearAll[u, t, x]; pde = D[u[x, t], {t, 2}] == 4*D[u[x, t], {x, 2}] + (1 + t)*x; ic = {u[x, 0] == 0, Derivative[0, 1][u][x, 0] == 0}; bc = {u[0, t] == 0, u[Pi, t] == Sin[t]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, t], {x, t}], 60*10]];
\[ \text {Failed} \]
Maple ✓
x:='x'; t:='t'; u:='u'; pde := diff(u(x, t), t$2) = 4*diff(u(x, t), x$2)+(1+t)*x; bc := u(0,t)=0,u(Pi,t)=sin(t); ic := u(x,0)=0,eval(diff(u(x,t),t),t=0)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, bc,ic],u(x,t))),output='realtime'));
\[ u \left ( x,t \right ) ={\frac {1}{\pi } \left ( x\sin \left ( t \right ) +\sum _{n=1}^{\infty }-2\,{\frac { \left ( 1/2\,\cos \left ( nx-t \right ) {n}^{3}-1/2\,\cos \left ( nx+t \right ) {n}^{3}+\sin \left ( nx \right ) \left ( \left ( -2\,{n}^{4}-1/2\,\pi \,{n}^{2}+\pi /8 \right ) \sin \left ( 2\,nt \right ) +n \left ( n+1/2 \right ) \left ( n-1/2 \right ) \pi \, \left ( t-\cos \left ( 2\,nt \right ) +1 \right ) \right ) \right ) \left ( -1 \right ) ^{n}}{\pi \,{n}^{4} \left ( 4\,{n}^{2}-1 \right ) }}\pi \right ) } \]