141 HFOPDE, chapter 5.6.4

141.1 Problem 1
141.2 Problem 2
141.3 Problem 3
141.4 Problem 4
141.5 Problem 5
141.6 Problem 6
141.7 Problem 7

____________________________________________________________________________________

141.1 Problem 1

problem number 1118

Added April 11, 2019.

Problem Chapter 5.6.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

awx+bwy=cw+kcot(λx+μy)

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x,y]+k*Cot[lambda*x+mu*y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)k(2(2aλ+2bμ+ic)e2iμ(aybx)aHypergeometric2F1(1,ic2(aλ+bμ),2aλ+2bμ+ic2aλ+2bμ,e2i(λx+μy))+2ice2i(λx+μy)Hypergeometric2F1(1,1+ic2(aλ+bμ),2+ic2(aλ+bμ),e2i(λx+μy))+(2aλ+2bμ+ic)(1+e2iμ(aybx)a))+c(c2i(aλ+bμ))ex(c2ibμ)ac1(ybxa)(e2ibμxae2iμy)c(c2i(aλ+bμ))(1+e2iμ(aybx)a)}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) =c*w(x,y)+k*cot(lambda*x+mu*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

w(x,y)=ecxa(xkacot((λ_a+μy)abμ(x_a)a)e_acad_a+_F1(yabxa))

____________________________________________________________________________________

141.2 Problem 2

problem number 1119

Added April 11, 2019.

Problem Chapter 5.6.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

awx+bwy=w+c1cotk(λx)+c2cotn(βy)

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == w[x,y]+ c1*Cot[lambda*x]^k + c2*Cot[beta*y]^n; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

$Aborted

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = w(x,y)+ c1*cot(lambda*x)^k + c2*cot(beta*y)^n; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

w(x,y)=exa(x1ae_aa(c1(cot(λ_a))k+c2(cot(β(yab(x_a))a))n)d_a+_F1(yabxa))

____________________________________________________________________________________

141.3 Problem 3

problem number 1120

Added April 11, 2019.

Problem Chapter 5.6.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

awx+bwy=cw+cotk(λx)cotn(βy)

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x,y]+ Cot[lambda*x]^k * Cot[beta*y]^n; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)ecxa(1xecK[1]acotk(λK[1])cotn(β(b(K[1]x)a+y))adK[1]+c1(ybxa))}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*w(x,y)+ cot(lambda*x)^k *cot(beta*y)^n; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

w(x,y)=ecxa(x(cot(λ_a))ka(cot(β(yab(x_a))a))ne_acad_a+_F1(yabxa))

____________________________________________________________________________________

141.4 Problem 4

problem number 1121

Added April 11, 2019.

Problem Chapter 5.6.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

awx+bcot(μy)wy=ccot(λx)w+kcot(νx)

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*D[w[x, y], x] + b*Cot[mu*y]*D[w[x, y], y] == c*Cot[lambda*x]*w[x,y]+k*Cot[nu*x]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)sincaλ(λx)(1xkcot(νK[1])sincaλ(λK[1])adK[1]+c1(log(sec(μy))μbxa))},{w(x,y)sincaλ(λx)(1xkcot(νK[2])sincaλ(λK[2])adK[2]+c1(log(sec(μy))μbxa))}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=  a*diff(w(x,y),x)+ b*cot(mu*y)*diff(w(x,y),y) = c*cot(lambda*x)*w(x,y)+ k*cot(nu*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

w(x,y)=(sin(λx))caλ(ykb(sin(λbμ(bμx+aln(cot(μy))1/2aln((cot(μy))2+1)+1/2aln(2(1+cos(2μ_a))1)aln(cos(μ_a)sin(μ_a)))))caλ(sin(1/21bμ(ln(2(1+cos(2μ_a))1)aν+2ln(cos(μ_a)sin(μ_a))aν+ln((cot(μy))2+1)aν2ln(cot(μy))aν2bμ(μ_a+νx)))sin(1/21bμ(ln(2(1+cos(2μ_a))1)aν+2ln(cos(μ_a)sin(μ_a))aν+ln((cot(μy))2+1)aν2ln(cot(μy))aν2bμ(μ_a+νx))))(sin(1/21bμ(ln(2(1+cos(2μ_a))1)aν+2ln(cos(μ_a)sin(μ_a))aν+ln((cot(μy))2+1)aν2ln(cot(μy))aν2bμ(μ_a+νx)))+sin(1/21bμ(ln(2(1+cos(2μ_a))1)aν+2ln(cos(μ_a)sin(μ_a))aν+ln((cot(μy))2+1)aν2ln(cot(μy))aν2bμ(μ_a+νx))))1d_a+_F1(1/22bμxaln((cot(μy))2+1)+2aln(cot(μy))bμ))

____________________________________________________________________________________

141.5 Problem 5

problem number 1122

Added April 11, 2019.

Problem Chapter 5.6.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

axwx+bywy=cw+kcot(λx+νy)

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*x*D[w[x, y], x] + b*y*D[w[x, y], y] == c*w[x,y]+k*Cot[lambda*x+nu*y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)xca(1xkK[1]a+cacot(νyxbaK[1]ba+λK[1])adK[1]+c1(yxba))}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=  a*x*diff(w(x,y),x)+ b*y*diff(w(x,y),y) =c*w(x,y)+k*cot(lambda*x+nu*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

w(x,y)=xca(xkacot(λ_a+νyxba_aba)_aacad_a+_F1(yxba))

____________________________________________________________________________________

141.6 Problem 6

problem number 1123

Added April 11, 2019.

Problem Chapter 5.6.4.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

acotn(λx)wx+bcotm(μx)wy=ccotk(νx)w+pcots(βy)

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*Cot[lambda*x]^n*D[w[x, y], x] + b*Cot[mu*x]^m*D[w[x, y], y] == c*Cot[nu*x]^k*w[x,y]+p*Cot[beta*y]^s; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

$Aborted

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=  a*cot(lambda*x)^n*diff(w(x,y),x)+ b*cot(mu*x)^m*diff(w(x,y),y) =c*cot(nu*x)^k*w(x,y)+p*cot(beta*y)^s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

w(x,y)=e(cot(νx))kc(cot(λx))nadx(_F1(1a(yab(cos(μx)sin(μx))m(cos(λx)sin(λx))ndx))+xpa(1cos(βa(b(cos(_fμ)sin(_fμ))m(cos(λ_f)sin(λ_f))nd_f+yab(cos(μx)sin(μx))m(cos(λx)sin(λx))ndx))(sin(βa(b(cos(_fμ)sin(_fμ))m(cos(λ_f)sin(λ_f))nd_f+yab(cos(μx)sin(μx))m(cos(λx)sin(λx))ndx)))1)s(cos(λ_f)sin(λ_f))neca(cos(ν_f)sin(ν_f))k(cos(λ_f)sin(λ_f))nd_fd_f)

____________________________________________________________________________________

141.7 Problem 7

problem number 1124

Added April 11, 2019.

Problem Chapter 5.6.4.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

acotn(λx)wx+bcotm(μx)wy=ccotk(νy)w+pcots(βx)

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*Cot[lambda*x]^n*D[w[x, y], x] + b*Cot[mu*x]^m*D[w[x, y], y] == c*Cot[nu*y]^k*w[x,y]+p*Cot[beta*x]^s; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

$Aborted

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=  a*cot(lambda*x)^n*diff(w(x,y),x)+ b*cot(mu*x)^m*diff(w(x,y),y) =c*cot(nu*y)^k*w(x,y)+p*cot(beta*x)^s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

w(x,y)=exc(cot(_bλ))na(cot(νa(b(cos(μx)sin(μx))m(cos(λx)sin(λx))ndx+a(b(cot(_bμ))m(cot(_bλ))nad_b+y))))kd_b(_F1(1a(yab(cos(μx)sin(μx))m(cos(λx)sin(λx))ndx))+xpa(cos(λ_f)sin(λ_f))n(cos(β_f)sin(β_f))seca(1cos(νa(b(cos(_fμ)sin(_fμ))m(cos(λ_f)sin(λ_f))nd_f+yab(cos(μx)sin(μx))m(cos(λx)sin(λx))ndx))(sin(νa(b(cos(_fμ)sin(_fμ))m(cos(λ_f)sin(λ_f))nd_f+yab(cos(μx)sin(μx))m(cos(λx)sin(λx))ndx)))1)k(cos(λ_f)sin(λ_f))nd_fd_f)