____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = (f(x)+g(y)) w \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (f[x] + g[y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \left \{\left \{w(x,y)\to c_1\left (\frac {a y-b x}{a}\right ) \exp \left (\int _1^x \frac {g\left (\frac {b K[1]+a y-b x}{a}\right )+f(K[1])}{a} \, dK[1]\right )\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) =(f(x)+g(y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( f \left ( {\it \_a} \right ) +g \left ( {\frac {b{\it \_a}+ya-bx}{a}} \right ) \right ) }{d{\it \_a}}}} \]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + a w_y = f(x) g(y) w \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = D[w[x, y], x] + a*D[w[x, y], y] == f[x]*g[y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \left \{\left \{w(x,y)\to c_1(y-a x) \exp \left (\int _1^x f(K[1]) g(a K[1]-a x+y) \, dK[1]\right )\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := diff(w(x,y),x)+a*diff(w(x,y),y) = f(x)*g(y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( -ax+y \right ) {{\rm e}^{\int ^{x}\!f \left ( {\it \_a} \right ) g \left ( {\it \_a}\,a-ax+y \right ) {d{\it \_a}}}} \]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + (a y+f(x)) w_y = g(x) h(y) w \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = D[w[x, y], x] + (a*y + f[x])*D[w[x, y], y] == g[x]*h[y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \left \{\left \{w(x,y)\to c_1\left (-e^{-a x} \left (e^{a x} \int _1^x e^{-a K[1]} f(K[1]) \, dK[1]-y\right )\right ) \exp \left (\int _1^x g(K[2]) h\left (e^{a K[2]} \left (\text {Integrate}\left [e^{-a K[1]} f(K[1]),\{K[1],1,K[2]\},\text {Assumptions}\to \text {True}\right ]-e^{-a x} \left (e^{a x} \text {Integrate}\left [e^{-a K[1]} f(K[1]),\{K[1],1,x\},\text {Assumptions}\to \text {True}\right ]-y\right )\right )\right ) \, dK[2]\right )\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := diff(w(x,y),x)+(a*y+f(x))*diff(w(x,y),y) = g(x)*h(y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!f \left ( x \right ) {{\rm e}^{-ax}}\,{\rm d}x+y{{\rm e}^{-ax}} \right ) {{\rm e}^{\int ^{x}\!g \left ( {\it \_b} \right ) h \left ( \left ( \int \!f \left ( {\it \_b} \right ) {{\rm e}^{-{\it \_b}\,a}}\,{\rm d}{\it \_b}-\int \!f \left ( x \right ) {{\rm e}^{-ax}}\,{\rm d}x+y{{\rm e}^{-ax}} \right ) {{\rm e}^{{\it \_b}\,a}} \right ) {d{\it \_b}}}} \]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f(x) w_x + g(y) w_y = (h_1(x)+h_2(y)) w \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = f[x]*D[w[x, y], x] + g[y]*D[w[x, y], y] == (h1[x] + h2[y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \text {Failed} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := f(x)*diff(w(x,y),x)+g(y)*diff(w(x,y),y) = (h1(x)+h2(y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int \! \left ( f \left ( x \right ) \right ) ^{-1}\,{\rm d}x+\int \! \left ( g \left ( y \right ) \right ) ^{-1}\,{\rm d}y \right ) {{\rm e}^{\int ^{x}\!{\frac {{\it h1} \left ( {\it \_f} \right ) +{\it h2} \left ( \RootOf \left ( \int \! \left ( f \left ( {\it \_f} \right ) \right ) ^{-1}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\! \left ( g \left ( {\it \_a} \right ) \right ) ^{-1}{d{\it \_a}}-\int \! \left ( f \left ( x \right ) \right ) ^{-1}\,{\rm d}x+\int \! \left ( g \left ( y \right ) \right ) ^{-1}\,{\rm d}y \right ) \right ) }{f \left ( {\it \_f} \right ) }}{d{\it \_f}}}} \] contains RootOf
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f_1(x) w_x +(f_2(x)+f_3(x) y^k)w_y = g(x) h(y) w \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = f1[x]*D[w[x, y], x] + (f2[x] + f3[x]*y^k)*D[w[x, y], y] == g[x]*h[y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \text {Failed} \]
Maple ✗
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := f1(x)*diff(w(x,y),x)+(f2(x)+f3(x)*y^k)*diff(w(x,y),y) = g(x)*h(y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ \text { sol=() } \]
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f_1(x) g_1(y) w_x + f_2(x) g_2(y) w_y = h_1(x) h_2(y) w \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = f1[x]*g1[y]*D[w[x, y], x] + f2[x]*g2[y]*D[w[x, y], y] == h1[x]*h2[y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \text {Failed} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := f1(x)*g1(y)*diff(w(x,y),x)+f2(x)*g2(y)*diff(w(x,y),y) = h1(x)*h2(y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!{\frac {{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac {{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ) {{\rm e}^{\int ^{x}\!{\frac {{\it h1} \left ( {\it \_f} \right ) }{{\it f1} \left ( {\it \_f} \right ) }{\it h2} \left ( \RootOf \left ( \int \!{\frac {{\it f2} \left ( {\it \_f} \right ) }{{\it f1} \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\!{\frac {{\it g1} \left ( {\it \_a} \right ) }{{\it g2} \left ( {\it \_a} \right ) }}{d{\it \_a}}-\int \!{\frac {{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac {{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ) \right ) \left ( {\it g1} \left ( \RootOf \left ( \int \!{\frac {{\it f2} \left ( {\it \_f} \right ) }{{\it f1} \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\!{\frac {{\it g1} \left ( {\it \_a} \right ) }{{\it g2} \left ( {\it \_a} \right ) }}{d{\it \_a}}-\int \!{\frac {{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac {{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ) \right ) \right ) ^{-1}}{d{\it \_f}}}} \] has RootOf
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ f_1(x) g_1(y) w_x + f_2(x) g_2(y) w_y = (h_1(x)+ h_2(y)) w \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = f1[x]*g1[y]*D[w[x, y], x] + f2[x]*g2[y]*D[w[x, y], y] == (h1[x] + h2[y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \text {Failed} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := f1(x)*g1(y)*diff(w(x,y),x)+f2(x)*g2(y)*diff(w(x,y),y) = (h1(x)+h2(y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!{\frac {{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac {{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{{\it f1} \left ( {\it \_f} \right ) } \left ( {\it h1} \left ( {\it \_f} \right ) +{\it h2} \left ( \RootOf \left ( \int \!{\frac {{\it f2} \left ( {\it \_f} \right ) }{{\it f1} \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\!{\frac {{\it g1} \left ( {\it \_a} \right ) }{{\it g2} \left ( {\it \_a} \right ) }}{d{\it \_a}}-\int \!{\frac {{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac {{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ) \right ) \right ) \left ( {\it g1} \left ( \RootOf \left ( \int \!{\frac {{\it f2} \left ( {\it \_f} \right ) }{{\it f1} \left ( {\it \_f} \right ) }}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\!{\frac {{\it g1} \left ( {\it \_a} \right ) }{{\it g2} \left ( {\it \_a} \right ) }}{d{\it \_a}}-\int \!{\frac {{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac {{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ) \right ) \right ) ^{-1}}{d{\it \_f}}}} \] has RootOf