____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.7.3.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = \left ( c \arctan (\frac {x}{\lambda } + k \arctan (\frac {y}{\beta } ) \right ) w \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c*ArcTan[x/lambda] + k*ArcTan[y/beta])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y)\to \left (\lambda ^2+x^2\right )^{-\frac {c \lambda }{2 a}} c_1\left (y-\frac {b x}{a}\right ) \exp \left (\frac {k \left (2 y \tan ^{-1}\left (\frac {y}{\beta }\right )-\beta \log \left (a^2 \left (\beta ^2+y^2\right )\right )\right )}{2 b}+\frac {c x \tan ^{-1}\left (\frac {x}{\lambda }\right )}{a}\right )\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = (c*arctan(x/lambda)+k*arctan(y/beta))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); sol:=simplify(sol);
\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) \left ( {\frac {{\lambda }^{2}+{x}^{2}}{{\lambda }^{2}}} \right ) ^{-1/2\,{\frac {\lambda \,c}{a}}} \left ( {\frac {{\beta }^{2}+{y}^{2}}{{\beta }^{2}}} \right ) ^{-1/2\,{\frac {\beta \,k}{b}}}{{\rm e}^{{\frac {1}{ab} \left ( \arctan \left ( {\frac {y}{\beta }} \right ) aky+cx\arctan \left ( {\frac {x}{\lambda }} \right ) b \right ) }}} \]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.7.3.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c \arctan (\lambda x+\beta y) w \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*ArcTan[lambda*x + beta*y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) \exp \left (\frac {c \left (2 (\beta y+\lambda x) \tan ^{-1}(\beta y+\lambda x)-\log \left (a^2 \left (\beta ^2 y^2+2 \beta \lambda x y+\lambda ^2 x^2+1\right )\right )\right )}{2 (a \lambda +b \beta )}\right )\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*arctan(lambda*x+beta*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); sol:=simplify(sol);
\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) \left ( {\beta }^{2}{y}^{2}+2\,\beta \,\lambda \,xy+{\lambda }^{2}{x}^{2}+1 \right ) ^{-{\frac {c}{2\,a\lambda +2\,b\beta }}}{{\rm e}^{{\frac {\arctan \left ( \beta \,y+\lambda \,x \right ) c \left ( \beta \,y+\lambda \,x \right ) }{a\lambda +b\beta }}}} \]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.7.3.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = a x \arctan (\lambda x+\beta y) w \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == a*x*ArcTan[lambda*x + beta*y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \left \{\left \{w(x,y)\to c_1\left (\frac {a y-b x}{a}\right ) \exp \left (\frac {a \left (\beta (a y-b x) \log \left (a^2 \left (\frac {\beta ^2 (a y-b x)^2}{a^2}+\frac {2 \beta \lambda x (a y-b x)}{a}+\lambda ^2 x^2+1\right )+2 a b \beta x \left (\frac {\beta (a y-b x)}{a}+\lambda x\right )+b^2 \beta ^2 x^2\right )-x (a \lambda +b \beta )\right )}{2 (a \lambda +b \beta )^2}+\frac {\left (a^2 \left (-\frac {\beta ^2 (a y-b x)^2}{a^2}+\lambda ^2 x^2+1\right )+2 a b \beta \lambda x^2+b^2 \beta ^2 x^2\right ) \tan ^{-1}\left (\frac {\beta (a y-b x)}{a}+\frac {b \beta x}{a}+\lambda x\right )}{2 (a \lambda +b \beta )^2}\right )\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = a*x*arctan(lambda*x+beta*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); sol:=simplify(sol);
\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) \left ( {\beta }^{2}{y}^{2}+2\,\beta \,\lambda \,xy+{\lambda }^{2}{x}^{2}+1 \right ) ^{1/2\,{\frac { \left ( ya-bx \right ) a\beta }{ \left ( a\lambda +b\beta \right ) ^{2}}}}{{\rm e}^{1/2\,{\frac {a \left ( \left ( \left ( -{\beta }^{2}{y}^{2}+{\lambda }^{2}{x}^{2}+1 \right ) a+2\,bx\beta \, \left ( \beta \,y+\lambda \,x \right ) \right ) \arctan \left ( \beta \,y+\lambda \,x \right ) -a \left ( \beta \,y+\lambda \,x \right ) \right ) }{ \left ( a\lambda +b\beta \right ) ^{2}}}}} \]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.7.3.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \arctan ^n(\lambda x)w_y = \left ( c \arctan ^m(\mu x) + s \arctan ^k(\beta y) \right ) w \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = a*D[w[x, y], x] + b*ArcTan[lambda*x]^n*D[w[x, y], y] == (c*ArcTan[mu*x]^m + s*ArcTan[beta*y]^k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \text {\$Aborted} \] Timed out
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := a*diff(w(x,y),x)+ b*arctan(lambda*x)^n*diff(w(x,y),y) =(c*arctan(mu*x)^m+s*arctan(beta*y)^k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); sol:=simplify(sol);
\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {-b\int \! \left ( \arctan \left ( \lambda \,x \right ) \right ) ^{n}\,{\rm d}x+ya}{a}} \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( c \left ( \arctan \left ( {\it \_b}\,\mu \right ) \right ) ^{m}+s \left ( \arctan \left ( {\frac {\beta \, \left ( b\int \! \left ( \arctan \left ( {\it \_b}\,\lambda \right ) \right ) ^{n}\,{\rm d}{\it \_b}-b\int \! \left ( \arctan \left ( \lambda \,x \right ) \right ) ^{n}\,{\rm d}x+ya \right ) }{a}} \right ) \right ) ^{k} \right ) }{d{\it \_b}}}} \]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.7.3.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \arctan ^n(\lambda y)w_y = \left ( c \arctan ^m(\mu x) + s \arctan ^k(\beta y) \right ) w \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = a*D[w[x, y], x] + b*ArcTan[lambda*y]^n*D[w[x, y], y] == (c*ArcTan[mu*x]^m + s*ArcTan[beta*y]^k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; sol = Simplify[sol];
\[ \text {\$Aborted} \] Timed out
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := a*diff(w(x,y),x)+ b*arctan(lambda*y)^n*diff(w(x,y),y) =(c*arctan(mu*x)^m+s*arctan(beta*y)^k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {a\int \! \left ( \arctan \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y}{b}}+x \right ) {{\rm e}^{\int ^{y}\!{\frac { \left ( \arctan \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}}{b} \left ( c \left ( \arctan \left ( \mu \, \left ( \int \!{\frac { \left ( \arctan \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}a}{b}}\,{\rm d}{\it \_b}-{\frac {a\int \! \left ( \arctan \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y}{b}}+x \right ) \right ) \right ) ^{m}+s \left ( \arctan \left ( \beta \,{\it \_b} \right ) \right ) ^{k} \right ) }{d{\it \_b}}}} \]