108 HFOPDE, chapter 4.4.4

108.1 Problem 1
108.2 Problem 2
108.3 Problem 3
108.4 Problem 4
108.5 Problem 5

____________________________________________________________________________________

108.1 Problem 1

problem number 900

Added Feb. 23, 2019.

Problem Chapter 4.4.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = (c \coth (\lambda x) + k \coth (\mu y)) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c*Coth[lambda*x] + k*Coth[mu*y])*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) \sinh ^{\frac {c}{a \lambda }}(\lambda x) \sinh ^{\frac {k}{b \mu }}(\mu y)\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) =   (c*coth(lambda*x) + k*coth(mu*y))*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) \left ( {\rm coth} \left (\lambda \,x\right )-1 \right ) ^{-1/2\,{\frac {c}{a\lambda }}} \left ( {\rm coth} \left (\lambda \,x\right )+1 \right ) ^{-1/2\,{\frac {c}{a\lambda }}} \left ( {\rm coth} \left (\mu \,y\right )-1 \right ) ^{-1/2\,{\frac {k}{b\mu }}} \left ( {\rm coth} \left (\mu \,y\right )+1 \right ) ^{-1/2\,{\frac {k}{b\mu }}} \]

____________________________________________________________________________________

108.2 Problem 2

problem number 901

Added Feb. 23, 2019.

Problem Chapter 4.4.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c \coth (\lambda x +\mu y) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Coth[lambda*x + mu*y]*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) \sinh ^{\frac {c}{a \lambda +b \mu }}(\lambda x+\mu y)\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) =   c*coth(lambda*x+mu*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol);
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) \left ( {\rm coth} \left (\lambda \,x+\mu \,y\right )-1 \right ) ^{-{\frac {c}{2\,a\lambda +2\,b\mu }}} \left ( {\rm coth} \left (\lambda \,x+\mu \,y\right )+1 \right ) ^{-{\frac {c}{2\,a\lambda +2\,b\mu }}} \]

____________________________________________________________________________________

108.3 Problem 3

problem number 902

Added Feb. 23, 2019.

Problem Chapter 4.4.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + y w_y = a x \coth (\lambda x +\mu y) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Coth[lambda*x + mu*y]*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {y}{x}\right ) \sinh ^{\frac {a}{\lambda +\frac {\mu y}{x}}}\left (x \left (\lambda +\frac {\mu y}{x}\right )\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde := x*diff(w(x,y),x)+y*diff(w(x,y),y) =   a*x*coth(lambda*x+mu*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {y}{x}} \right ) \left ( {\rm coth} \left (\lambda \,x+\mu \,y\right )-1 \right ) ^{-1/2\,{a \left ( {\frac {\mu \,y}{x}}+\lambda \right ) ^{-1}}} \left ( {\rm coth} \left (\lambda \,x+\mu \,y\right )+1 \right ) ^{-1/2\,{a \left ( {\frac {\mu \,y}{x}}+\lambda \right ) ^{-1}}} \]

____________________________________________________________________________________

108.4 Problem 4

problem number 903

Added Feb. 23, 2019.

Problem Chapter 4.4.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \coth ^n(\lambda x) w_y = (c \coth ^m(\mu x)+s \coth ^k(\beta y)) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*Coth[lambda*x]^n*D[w[x, y], y] == (c*Coth[mu*x]^m + s*Coth[beta*y]^k)*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde := a*diff(w(x,y),x)+b*coth(lambda*x)^n*diff(w(x,y),y) =  (c*coth(mu*x)^m+s*coth(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!{\frac {b \left ( {\rm coth} \left (\lambda \,x\right ) \right ) ^{n}}{a}}\,{\rm d}x+y \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( c \left ( {\rm coth} \left ({\it \_b}\,\mu \right ) \right ) ^{m}+s \left ( {\rm coth} \left (\beta \,\int \!{\frac {b \left ( {\rm coth} \left ({\it \_b}\,\lambda \right ) \right ) ^{n}}{a}}\,{\rm d}{\it \_b}+ \left ( -\int \!{\frac {b \left ( {\rm coth} \left (\lambda \,x\right ) \right ) ^{n}}{a}}\,{\rm d}x+y \right ) \beta \right ) \right ) ^{k} \right ) }{d{\it \_b}}}} \]

____________________________________________________________________________________

108.5 Problem 5

problem number 904

Added Feb. 23, 2019.

Problem Chapter 4.4.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \coth ^n(\lambda y) w_y = (c \coth ^m(\mu x)+s \coth ^k(\beta y)) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*Coth[lambda*y]^n*D[w[x, y], y] == (c*Coth[mu*x]^m + s*Coth[beta*y]^k)*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde := a*diff(w(x,y),x)+b*coth(lambda*y)^n*diff(w(x,y),y) =  (c*coth(mu*x)^m+s*coth(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {a\int \! \left ( {\rm coth} \left (y\lambda \right ) \right ) ^{-n}\,{\rm d}y}{b}}+x \right ) {{\rm e}^{\int ^{y}\!{\frac { \left ( {\rm coth} \left ({\it \_b}\,\lambda \right ) \right ) ^{-n}}{b} \left ( c \left ( -{\rm coth} \left (-\mu \,\int \!{\frac { \left ( {\rm coth} \left ({\it \_b}\,\lambda \right ) \right ) ^{-n}a}{b}}\,{\rm d}{\it \_b}-\mu \, \left ( -{\frac {a\int \! \left ( {\rm coth} \left (y\lambda \right ) \right ) ^{-n}\,{\rm d}y}{b}}+x \right ) \right ) \right ) ^{m}+s \left ( {\rm coth} \left (\beta \,{\it \_b}\right ) \right ) ^{k} \right ) }{d{\it \_b}}}} \]