106 HFOPDE, chapter 4.4.2

106.1 Problem 1
106.2 Problem 2
106.3 Problem 3
106.4 Problem 4
106.5 Problem 5

____________________________________________________________________________________

106.1 Problem 1

problem number 890

Added Feb. 23, 2019.

Problem Chapter 4.4.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = (c \cosh (\lambda x) + k \cosh (\mu y)) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c*Cosh[lambda*x] + k*Cosh[mu*y])*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) e^{\frac {c \sinh (\lambda x)}{a \lambda }+\frac {k \sinh (\mu y)}{b \mu }}\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) =   (c*cosh(lambda*x) + k*cosh(mu*y))*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{{\frac {c\sinh \left ( \lambda \,x \right ) b\mu +k\sinh \left ( \mu \,y \right ) a\lambda }{a\lambda \,b\mu }}}} \]

____________________________________________________________________________________

106.2 Problem 2

problem number 891

Added Feb. 23, 2019.

Problem Chapter 4.4.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c \cosh (\lambda x +\mu y) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Cosh[lambda*x + mu*y]*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {a y-b x}{a}\right ) \exp \left (\frac {c \sinh \left (\mu \left (\frac {a y-b x}{a}+\frac {b x}{a}\right )+\lambda x\right )}{a \lambda +b \mu }\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) =   c*cosh(lambda*x+mu*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{{\frac {c}{a\lambda +b\mu }\sinh \left ( {\frac { \left ( ya-bx \right ) \mu +ax\lambda +b\mu \,x}{a}} \right ) }}} \]

____________________________________________________________________________________

106.3 Problem 3

problem number 892

Added Feb. 23, 2019.

Problem Chapter 4.4.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + y w_y = a x \cosh (\lambda x +\mu y) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Cosh[lambda*x + mu*y]*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {y}{x}\right ) e^{\frac {a \sinh \left (x \left (\lambda +\frac {\mu y}{x}\right )\right )}{\lambda +\frac {\mu y}{x}}}\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde := x*diff(w(x,y),x)+y*diff(w(x,y),y) =   a*x*cosh(lambda*x+mu*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {y}{x}} \right ) {{\rm e}^{{a\sinh \left ( \lambda \,x+\mu \,y \right ) \left ( {\frac {\mu \,y}{x}}+\lambda \right ) ^{-1}}}} \]

____________________________________________________________________________________

106.4 Problem 4

problem number 893

Added Feb. 23, 2019.

Problem Chapter 4.4.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \cosh ^n(\lambda x) w_y = (c \cosh ^m(\mu x)+s \cosh ^k(\beta y)) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*Cosh[lambda*x]^n*D[w[x, y], y] == (c*Cosh[mu*x]^m + s*Cosh[beta*y]^k)*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde := a*diff(w(x,y),x)+b*cosh(lambda*x)^n*diff(w(x,y),y) =  (c*cosh(mu*x)^m+s*cosh(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!{\frac {b \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{n}}{a}}\,{\rm d}x+y \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( c \left ( \cosh \left ( {\it \_b}\,\mu \right ) \right ) ^{m}+s \left ( \cosh \left ( \beta \,\int \!{\frac {b \left ( \cosh \left ( {\it \_b}\,\lambda \right ) \right ) ^{n}}{a}}\,{\rm d}{\it \_b}+ \left ( -\int \!{\frac {b \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{n}}{a}}\,{\rm d}x+y \right ) \beta \right ) \right ) ^{k} \right ) }{d{\it \_b}}}} \]

____________________________________________________________________________________

106.5 Problem 5

problem number 894

Added Feb. 23, 2019.

Problem Chapter 4.4.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \cosh ^n(\lambda y) w_y = (c \cosh ^m(\mu x)+s \cosh ^k(\beta y)) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, s, mu, d, g, B, v, f, h, q, p, delta]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*Cosh[lambda*y]^n*D[w[x, y], y] == (c*Cosh[mu*x]^m + s*Cosh[beta*y]^k)*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde := a*diff(w(x,y),x)+b*cosh(lambda*y)^n*diff(w(x,y),y) =  (c*cosh(mu*x)^m+s*cosh(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {bx-a\int \! \left ( \cosh \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y}{b}} \right ) {{\rm e}^{\int ^{y}\!{\frac { \left ( \cosh \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}}{b} \left ( c \left ( \cosh \left ( -\mu \,\int \!{\frac { \left ( \cosh \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}a}{b}}\,{\rm d}{\it \_b}-{\frac {\mu \, \left ( bx-a\int \! \left ( \cosh \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y \right ) }{b}} \right ) \right ) ^{m}+s \left ( \cosh \left ( \beta \,{\it \_b} \right ) \right ) ^{k} \right ) }{d{\it \_b}}}} \]