10 Heat PDE inside Sphere

10.1 No angle dependencies, zero intial conditions, non zero temperature at surface

____________________________________________________________________________________

10.1 No angle dependencies, zero intial conditions, non zero temperature at surface

problem number 89

Added March 28, 2019.

Problem 1, section 41, Fourier series and boundary value problems 8th edition by Brown and Churchill.

Solve \(u_t = \nabla u \) where \(\nabla u = \frac {1}{r} (r u)_{rr} \) in Spherical coordinates with initial conditions \(u(r,0)=0\) and boundary conditions \(u(1,t)=t\)

Mathematica

ClearAll[r, t, u, k]; 
 pde = D[u[r, t], t] == (k*D[r*u[r, t], {r, 2}])/r; 
 ic = u[r, 0] == 0; 
 bc = u[1, t] == t; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[r, t], {r, t}, Assumptions -> {t > 0, k > 0}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
r:='r'; u:='u'; t:='t';theta:='theta';k:='k'; 
pde:=diff(u(r,t),t)= k/r*diff(r*u(r,t),r$2); 
ic:=u(r,0)=0; 
bc := u(1,t) =t; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],u(r,t),HINT =boundedseries(r=0)) assuming t>0,k>0) ,output='realtime'));
 

\[ u \left ( r,t \right ) ={\frac {1}{r} \left ( -{\it invlaplace} \left ( {{\it \_F2} \left ( s \right ) \sinh \left ( {\frac {\sqrt {s}r}{\sqrt {k}}} \right ) \cosh \left ( {\frac {\sqrt {s}}{\sqrt {k}}} \right ) \left ( \sinh \left ( {\frac {\sqrt {s}}{\sqrt {k}}} \right ) \right ) ^{-1}},s,t \right ) +{\it invlaplace} \left ( {\frac {1}{{s}^{2}}\sinh \left ( {\frac {\sqrt {s}r}{\sqrt {k}}} \right ) \left ( \sinh \left ( {\frac {\sqrt {s}}{\sqrt {k}}} \right ) \right ) ^{-1}},s,t \right ) +{\it invlaplace} \left ( {\it \_F2} \left ( s \right ) \cosh \left ( {\frac {\sqrt {s}r}{\sqrt {k}}} \right ) ,s,t \right ) \right ) } \] Has unresolved Laplace integrals