2.43 Generate sparse matrix for the tridiagonal representation of second difference operator in 1D

The second derivative d2udx2 is approximated by ui12ui+ui+1h2 where h is the grid spacing. Generate the A matrix that represent this operator for n=4 where n is the number of internal grid points on the line

Mathematica

numberOfInternalGridPoints = 4; 
n  = 3*internalGridPoints; 
sp = SparseArray[{Band[{1,1}]->-2, 
                  Band[{1,2}]->1, 
                  Band[{2,1}]->1}, 
                  {n,n}] 
Out[103]= SparseArray[<34>,{12,12}] 
MatrixForm[sp]
 

(210000000000121000000000012100000000001210000000000121000000000012100000000001210000000000121000000000012100000000001210000000000121000000000012)

 

Matlab

internalGridPoints = 4; 
n = 3*internalGridPoints; 
e = ones(n,1); 
sp = spdiags([e -2*e e], -1:1, n,n); 
full(sp)
 

ans = 
-2  1  0  0  0  0  0  0  0  0  0   0 
 1 -2  1  0  0  0  0  0  0  0  0   0 
 0  1 -2  1  0  0  0  0  0  0  0   0 
 0  0  1 -2  1  0  0  0  0  0  0   0 
 0  0  0  1 -2  1  0  0  0  0  0   0 
 0  0  0  0  1 -2  1  0  0  0  0   0 
 0  0  0  0  0  1 -2  1  0  0  0   0 
 0  0  0  0  0  0  1 -2  1  0  0   0 
 0  0  0  0  0  0  0  1 -2  1  0   0 
 0  0  0  0  0  0  0  0  1 -2  1   0 
 0  0  0  0  0  0  0  0  0  1 -2   1 
 0  0  0  0  0  0  0  0  0  0  1  -2
 

 

Maple

interface(rtablesize=16): 
LinearAlgebra:-BandMatrix([1,-2,1],1,12,12);
 

[210000000000121000000000012100000000001210000000000121000000000012100000000001210000000000121000000000012100000000001210000000000121000000000012]