1.37 Plot the dynamic response factor \(R_{d}\) of a system as a function of \(r=\frac {\omega }{\omega _{n}}\) for different damping ratios

Problem: Plot the standard curves showing how the dynamic response \(R_{d}\) changes as \(r=\frac {\omega }{\omega _{n}}\) changes. Do this for different damping ratio \(\xi \). Also plot the phase angle.

These plots are result of analysis of the response of a second order damped system to a harmonic loading. \(\omega \) is the forcing frequency and \(\omega _{n}\) is the natural frequency of the system.

Mathematica

Rd[r_,z_]:=1/Sqrt[(1-r^2)^2+(2 z r)^2]; 
 
phase[r_,z_]:=Module[{t}, 
   t=ArcTan[(2z r)/(1-r^2)]; 
   If[t<0,t=t+Pi]; 
   180/Pi t 
]; 
 
plotOneZeta[z_,f_] := Module[{r,p1,p2}, 
 p1 = Plot[f[r,z],{r,0,3},PlotRange->All, 
       PlotStyle->Blue]; 
 
 p2 = Graphics[Text[z,{1.1,1.1f[1.1,z]}]]; 
 Show[{p1,p2}] 
]; 
 
p1 = Graphics[{Red,Line[{{1,0},{1,6}}]}]; 
p2 = Map[plotOneZeta[#,Rd]&,Range[.1,1.2,.2]]; 
 
Show[p2,p1, 
 FrameLabel->{{"Subscript[R, d]",None}, 
 {"r= \[Omega]/Subscript[\[Omega], n]", 
  "Dynamics Response vs. Frequency\ 
    ratio for different \[Xi]"}}, 
 Frame->True, 
 GridLines->Automatic,GridLinesStyle->Dashed, 
 ImageSize -> 300,AspectRatio -> 1]
 

pict

p = Map[plotOneZeta[#,phase]&,Range[.1,1.2,.2]]; 
Show[p,FrameLabel->{{"Phase in degrees",None}, 
  {"r= \[Omega]/Subscript[\[Omega], n]", 
  "Phase vs. Frequency ratio for different \[Xi]"}}, 
  Frame->True, 
  GridLines->Automatic,GridLinesStyle->Dashed, 
  ImageSize->300,AspectRatio->1]
 

pict