1.31 Draw the root locus from the open loop transfer function

Problem: Given \(L(s)\), the open loop transfer function, draw the root locus. Let \[ L(s)=\frac {s^2+2 s+4}{s(s+4)(s+6)(s^2+1.4 s+1)}\]

Root locus is the locus of the closed loop dominant pole as the gain \(k\) is varied from zero to infinity.

Mathematica

Remove["Global`*"] 
sys = TransferFunctionModel[ 
 k*(s^2+2 s+4)/ 
     (s(s+4)(s+6)(s^2+1.4s+1)),s]; 
RootLocusPlot[sys,{k,0,100}, 
    ImageSize->300, 
    GridLines->Automatic, 
    GridLinesStyle->Dashed, 
    Frame->True, 
    AspectRatio -> 1]
 

pict

 

Matlab

clear all; close all; 
s=tf('s'); 
sys=(s^2+2*s+4)/... 
 (s*(s+4)*(s+6)*(s^2+1.4*s+1)); 
 
rlocus(sys,0:100) 
set(gcf,'Position',[10,10,420,420]);
 

pict