1.21 Find the system type given an open loop transfer function
Problem: Find the system type for the following transfer functions
- \(\frac {s+1}{s^{2}-s}\)
- \(\frac {s+1}{s^{3}-s^{2}}\)
- \(\frac {s+1}{s^{5}}\)
To find the system type, the transfer function is put in the form \(\frac {k\sum _{i}\left ( s-s_{i}\right ) }{s^{M}\sum _{j}\left ( s-s_{j}\right ) }\), then the system type is the
exponent \(M\). Hence it can be seen that the first system above has type one since the
denominator can be written as \(s^{1}\left ( s-1\right )\) and the second system has type 2 since the denominator can
be written as \(s^{2}\left ( s-1\right ) \) and the third system has type 5. The following computation determines the
type
Mathematica
Clear["Global`*"];
p=TransferFunctionPoles[TransferFunctionModel[
(s+1)/(s^2-s),s]];
Count[Flatten[p],0]
|
Out[171]= 1 |
p=TransferFunctionPoles[TransferFunctionModel[
(s+1)/( s^3-s^2),s]];
Count[Flatten[p],0]
|
Out[173]= 2 |
p=TransferFunctionPoles[
TransferFunctionModel[(s+1)/ s^5 ,s]];
Count[Flatten[p],0]
|
Out[175]= 5 |
Matlab
clear all;
s=tf('s');
[~,p,~]=zpkdata((s+1)/(s^2-s));
length(find(p{:}==0))
|
ans =
1
|
[~,p,~]=zpkdata((s+1)/(s^3-s^2));
length(find(p{:}==0))
|
ans =
2
|
[~,p,~]=zpkdata((s+1)/s^5);
length(find(p{:}==0))
|
ans =
5
|