1.21 Find the system type given an open loop transfer function

Problem: Find the system type for the following transfer functions

  1. \(\frac {s+1}{s^{2}-s}\)
  2. \(\frac {s+1}{s^{3}-s^{2}}\)
  3. \(\frac {s+1}{s^{5}}\)

To find the system type, the transfer function is put in the form \(\frac {k\sum _{i}\left ( s-s_{i}\right ) }{s^{M}\sum _{j}\left ( s-s_{j}\right ) }\), then the system type is the exponent \(M\). Hence it can be seen that the first system above has type one since the denominator can be written as \(s^{1}\left ( s-1\right )\) and the second system has type 2 since the denominator can be written as \(s^{2}\left ( s-1\right ) \) and the third system has type 5. The following computation determines the type

Mathematica

Clear["Global`*"]; 
p=TransferFunctionPoles[TransferFunctionModel[ 
    (s+1)/(s^2-s),s]]; 
Count[Flatten[p],0]
 

Out[171]= 1

p=TransferFunctionPoles[TransferFunctionModel[ 
    (s+1)/( s^3-s^2),s]]; 
Count[Flatten[p],0]
 

Out[173]= 2

p=TransferFunctionPoles[ 
   TransferFunctionModel[(s+1)/ s^5 ,s]]; 
Count[Flatten[p],0]
 

Out[175]= 5

 

Matlab

clear all; 
s=tf('s'); 
[~,p,~]=zpkdata((s+1)/(s^2-s)); 
length(find(p{:}==0))
 

ans = 
     1
 

[~,p,~]=zpkdata((s+1)/(s^3-s^2)); 
length(find(p{:}==0))
 

ans = 
     2
 

[~,p,~]=zpkdata((s+1)/s^5); 
length(find(p{:}==0))
 

ans = 
     5