1.18 Solve the continuous-time algebraic Riccati equation

Problem: Solve for \(X\) in the Riccati equation \[ A^{\prime }X+XA-XBR^{-1}B^{\prime }X+C^{\prime }C=0 \] given \begin {align*} A & =\begin {pmatrix} -3 & 2\\ 1 & 1 \end {pmatrix} \\ B & =\begin {pmatrix} 0\\ 1 \end {pmatrix} \\ C & =\begin {pmatrix} 1 & -1 \end {pmatrix} \\ R & =3 \end {align*}

Mathematica

Clear ["Global`*"]; 
a={{-3,2},{1,1}}; 
b={{0},{1}}; 
c={{1,-1}}; 
r={{3}}; 
sol=RiccatiSolve[{a,b},{Transpose[c].c,r}]; 
MatrixForm[N[sol]]
 

\[ \left ( {\begin {array}{cc} 0.589517 & 1.82157 \\ 1.82157 & 8.81884 \\ \end {array}} \right ) \]

 

Matlab

%needs control system 
clear all; close all; 
a = [-3 2;1 1]; 
b = [0 ; 1]; 
c = [1 -1]; 
r = 3; 
x = care(a,b,c'*c,r)
 

x = 
    0.5895    1.8216 
    1.8216    8.8188
 

 

Maple

restart; 
A:=Matrix([[-3,2],[1,1]]); 
B:=Vector([0,1]); 
C:=Vector[row]([1,-1]); 
Q:=C^%T.C; 
R:=Matrix([[3]]); 
LinearAlgebra:-CARE(A,B,Q,R)
 

\[ \left [\begin {array}{cc} 0.5895174373 & 1.8215747249 \\ 1.8215747249 & 8.8188398069 \end {array}\right ] \]