Problem: Solve \[ y^{\prime \prime }\left ( t\right ) -1.5y^{\prime }\left ( t\right ) +5y\left ( t\right ) =4\cos \left ( t\right ) \] with initial conditions \[ y\left ( 0\right ) =1 , y^{\prime }\left ( 0\right ) =0 \] To use Matlab ode45, the second order ODE is converted to state space as follows
Given \(y^{\prime \prime }\left ( t\right ) -1.5y^{\prime }\left ( t\right ) +5y\left ( t\right ) =4\cos \left ( t\right ) \), let \begin {align*} x_{1} & =y\\ x_{2} & =y^{\prime }\\ & =x_{1}^{\prime } \end {align*}
hence \[ x_{1}^{\prime }=x_{2}\] and \begin {align*} x_{2}^{\prime } & =y^{\prime \prime }\\ & =1.5y^{\prime }-5y+4\cos \left ( t\right ) \\ & =1.5x_{2}-5x_{1}+4\cos \left ( t\right ) \end {align*}
Hence we can now write \[\begin {bmatrix} x_{1}^{\prime }\\ x_{2}^{\prime }\end {bmatrix} =\begin {bmatrix} 0 & 1\\ -5 & 1.5 \end {bmatrix}\begin {bmatrix} x_{1}\\ x_{2}\end {bmatrix} +\begin {bmatrix} 0\\ 4 \end {bmatrix} \cos \left ( t\right ) \]
Mathematica
Remove["Global`*"]; eq = y''[t]-15/10y'[t]+5y[t]==4 Cos[t]; ic = {y'[0]==0,y[0]== 1}; sol = First@DSolve[{eq,ic},y[t],t];
\[ \frac {1}{5183}( -1704 \sin (t) \sin ^2\left (\frac {\sqrt {71} t}{4}\right )+69 \sqrt {71} e^{3 t/4} \sin \left (\frac {\sqrt {71} t}{4}\right )+4544 \cos (t) \cos ^2\left (\frac {\sqrt {71} t}{4}\right )+639 e^{3 t/4} \cos \left (\frac {\sqrt {71} t}{4}\right )-1704 \sin (t) \cos ^2\left (\frac {\sqrt {71} t}{4}\right )+4544 \sin ^2\left (\frac {\sqrt {71} t}{4}\right ) \cos (t))) \]
Plot[y,{t,0,10}, FrameLabel->{{"y(t)",None}, {"t","Solution"}}, Frame->True, GridLines->Automatic, GridLinesStyle->Automatic, RotateLabel->False, ImageSize->300, AspectRatio->1, PlotRange->All, PlotStyle->{Thick,Red}]
Matlab
function e55 t0 = 0; %initial time tf = 10; %final time %initial conditions [y(0) y'(0)] ic =[1 0]'; [t,y] = ode45(@rhs, [t0 tf], ic); plot(t,y(:,1),'r') title('Solution using ode45'); xlabel('time'); ylabel('y(t)'); grid on set(gcf,'Position',[10,10,320,320]); function dydt=rhs(t,y) dydt=[y(2) ; -5*y(1)+1.5*y(2)+4*cos(t)]; end end