Find \(x[n]\), give its DTFT \(X(\Omega )\) \begin {align*} x[n] &= \frac {1}{2 \pi } \int _{-\pi }^{\pi } X(\Omega ) e^{i\Omega n} \mathop {d\Omega } \end {align*}
Mathematica
Clear["Global`*"]; x[n_] := Sin[(Pi*n)/8]; X = FourierSequenceTransform[x[n], n, w, FourierParameters -> {1, 1}]; InverseFourierSequenceTransform[X, w, n]
Which gives
Sin[(Pi*n)/8]