This example show how to do FFT on a continouse time function, then do an IFFT to recover the original function. This is done in Matlab and Maple
clear all; t = linspace(-pi,pi,100); dt = t(2)-t(1); fs = 1/dt; w = linspace(0,fs,100); y = sin(t) + 2*sin(3*t); g = exp(-w) .* fft(y); h = ifft(g); plot(real(h));
#showing how to do FFT and IFT in maple 10. Nasser M. Abbasi. restart; with(inttrans): with(LinearAlgebra): with(plots): N:=100: #the function to fft y:= t->sin(t) + 2*sin(3*t): linspace:=proc(fromP,toP,n) local incr,data,i,T,L; incr:=(toP-fromP)/(n-1); L:=Vector(1..n,[]); T:=fromP; for i from 1 to n do L[i]:=T; T:=T+incr; end do: return(L); end proc: data:=Vector(1..N,[]): g:=Vector(1..N,[]): T:=linspace(-Pi,Pi,N): for i from 1 to N do data[i]:=evalf(y(T[i])); end do: Y:=DiscreteTransforms:-FourierTransform( data,algorithm=DFT,padding=0 ): adj:=evalf(sqrt(1/N)): #adjust as maple has normalization factor Y:=Y/adj: dt:=T[2]-T[1]: fs:=1/dt: w:=evalf(linspace(0,fs,N)): s:=[seq(exp(-w[i]),i=1..N)]: g:=Vector(N,zip((x,y)->x*y,s,convert(Y,list))): h:=DiscreteTransforms:-InverseFourierTransform( g ): h:=h*sqrt(1/N):#adjust the IFFT due to maple normalization again listplot(map(Re,h),color=red,labels=["t","y(t)"],title="result of IFFT");