HOME
PDF version of document

Generating the four Kharitonov polynomials and displaying corresponding Hurwitz stability matrix

by Nasser M. Abbasi
Nov 27, 2014

Introduction

Software written in Mathematica to generate the four Kharitonov’s  polynomials from the interval polynomial specification and construct the four Hurwitz stability matrices to test for stability of each polynomial. Examples from chapter 5, “New tools for robustness of linear systems” by Professor B. Ross Barmish are used for illustration.

Example 5.5.2

This function takes interval polynomal and generates the 4 Kharitonov’s polynomials

index_1.png

index_2.png
index_3.png
index_4.png
index_5.png

This function takes the result and generate the Hurwitz matrix and root locations. The polynomial is stable when all leading minors are positive.

index_6.png

Hurwitz Matrix index_7.png root locations Real part of roots
index_8.png
index_9.png
index_10.png 9
index_11.png 6
index_12.png -108
index_13.png -196
index_14.png -196
index_15.gif
-1.71185
-1.00624
-1.00624
0.362161
0.362161
index_16.png
index_17.png
index_18.png 10
index_19.png 10
index_20.png -110
index_21.png -196
index_22.png -392
index_23.gif
-1.5452
-0.854858
-0.854858
0.627459
0.627459
index_24.png
index_25.png
index_26.png 9
index_27.png -9
index_28.png -270
index_29.png -729
index_30.png -729
index_31.gif
-2.43433
-1.25737
-1.25737
0.474539
0.474539
index_32.png
index_33.png
index_34.png 10
index_35.png 25
index_36.png 45
index_37.png -89
index_38.png -178
index_39.gif
-1.3877
-0.672514
-0.672514
0.616365
0.616365

Example 5.6.2

index_40.png

index_41.png
index_42.png
index_43.png
index_44.png

index_45.png

Hurwitz Matrix index_46.png root locations Real part of roots
index_47.png
index_48.png
index_49.png 0.75
index_50.png 2.125
index_51.png 2.65625
index_52.gif
-2.38347
-0.108264
-0.108264
index_53.png
index_54.png
index_55.png 1.25
index_56.png 3.125
index_57.png 0.78125
index_58.gif
-10.5718
-0.21411
-0.21411
index_59.png
index_60.png
index_61.png 0.75
index_62.png 0.5
index_63.png 0.625
index_64.gif
-2.13812
-0.0309384
-0.0309384
index_65.png
index_66.png
index_67.png 1.25
index_68.png 4.
index_69.png 1.
index_70.gif
-12.6098
-0.195114
-0.195114

Example 5.10.1

index_71.png

index_72.png
index_73.png
index_74.png
index_75.png

index_76.png

Hurwitz Matrix index_77.png root locations Real part of roots
index_78.png
index_79.png
index_80.png 1.95
index_81.png 3.225
index_82.png 7.9575
index_83.png 9.39937
index_84.png 6.41034
index_85.png 6.41034
index_86.gif
-3.2334
-0.299508
-0.116271
-0.116271
-0.0922772
-0.0922772
index_87.png
index_88.png
index_89.png 2.05
index_90.png 2.775
index_91.png 4.0575
index_92.png 2.49938
index_93.png 0.404656
index_94.png 0.404656
index_95.gif
-3.3032
-0.338496
-0.1981
-0.1981
-0.00605111
-0.00605111
index_96.png
index_97.png
index_98.png 1.95
index_99.png 2.425
index_100.png 3.5075
index_101.png 3.11438
index_102.png 2.34509
index_103.png 2.34509
index_104.gif
-3.20234
-0.356709
-0.173359
-0.173359
-0.0221182
-0.0221182
index_105.png
index_106.png
index_107.png 2.05
index_108.png 3.575
index_109.png 8.4075
index_110.png 7.81438
index_111.png 2.68991
index_112.png 2.68991
index_113.gif
-3.33369
-0.281521
-0.17061
-0.17061
-0.0467823
-0.0467823

page 71 example, in conlcusion

index_114.png

index_115.png
index_116.png
index_117.png
index_118.png

index_119.png

Hurwitz Matrix index_120.png root locations Real part of roots
index_121.png
index_122.png
index_123.png 2.5
index_124.png 16.3945
index_125.png 76.3375
index_126.png 76.3375
index_127.gif
-2.70998
-1.89535
-0.216088
-0.216088
index_128.png
index_129.png
index_130.png 9.5
index_131.png 42.3173
index_132.png 119.115
index_133.png 119.115
index_134.gif
-4.33442
-0.269038
-0.269038
-0.0750017
index_135.png
index_136.png
index_137.png 2.5
index_138.png 8.56797
index_139.png 36.9111
index_140.png 36.9111
index_141.gif
-3.9738
-0.568926
-0.247385
-0.247385
index_142.png
index_143.png
index_144.png 9.5
index_145.png 66.7352
index_146.png 239.922
index_147.png 239.922
index_148.gif
-3.69136
-0.611201
-0.611201
-0.033736
Created with the Wolfram Language