\[ y'(x)=\frac {y(x)}{x \log (x)}-x^3 \left (-y(x)^2-2 y(x) \log (x)-\log ^2(x)\right ) \] ✓ Mathematica : cpu = 0.128321 (sec), leaf count = 44
\[\left \{\left \{y(x)\to \frac {\log (x) \left (-16 \left (c_1+1\right )+x^4-4 x^4 \log (x)\right )}{16 c_1-x^4+4 x^4 \log (x)}\right \}\right \}\]
✓ Maple : cpu = 0.043 (sec), leaf count = 43
\[ \left \{ y \left ( x \right ) =-{\frac {\ln \left ( x \right ) \left ( 4\,{x}^{4}\ln \left ( x \right ) -{x}^{4}+8\,{\it \_C1}+16 \right ) }{4\,{x}^{4}\ln \left ( x \right ) -{x}^{4}+8\,{\it \_C1}}} \right \} \]