\[ y'(x)=\frac {e^{-2 x} (x-1) y(x) \left (x^2 y(x)^2+e^x x y(x)+e^{2 x}\right )}{x} \] ✓ Mathematica : cpu = 9.76365 (sec), leaf count = 341
\[\text {Solve}\left [\frac {2^{2/3} \left (1-\frac {e^x \left (e^{-3 x} (x-1)^3\right )^{2/3} \left (3 x y(x)+e^x\right )}{(x-1)^2}\right ) \left (\frac {e^x \left (e^{-3 x} (x-1)^3\right )^{2/3} \left (3 x y(x)+e^x\right )}{(x-1)^2}+2\right ) \left (\left (1-\frac {e^x \left (e^{-3 x} (x-1)^3\right )^{2/3} \left (3 x y(x)+e^x\right )}{(x-1)^2}\right ) \log \left (2^{2/3} \left (1-\frac {e^x \left (e^{-3 x} (x-1)^3\right )^{2/3} \left (3 x y(x)+e^x\right )}{(x-1)^2}\right )\right )+\left (\frac {e^x \left (e^{-3 x} (x-1)^3\right )^{2/3} \left (3 x y(x)+e^x\right )}{(x-1)^2}-1\right ) \log \left (2^{2/3} \left (\frac {e^x \left (e^{-3 x} (x-1)^3\right )^{2/3} \left (3 x y(x)+e^x\right )}{(x-1)^2}+2\right )\right )-3\right )}{9 \left (-e^{-3 x} \left (3 x y(x)+e^x\right )^3+\frac {3 e^x \left (e^{-3 x} (x-1)^3\right )^{2/3} \left (3 x y(x)+e^x\right )}{(x-1)^2}-2\right )}=c_1+\frac {2^{2/3} e^{-x} (x-1) (x-\log (x))}{9 \sqrt [3]{e^{-3 x} (x-1)^3}},y(x)\right ]\]
✓ Maple : cpu = 0.698 (sec), leaf count = 40
\[ \left \{ y \left ( x \right ) ={\frac {1}{9\,x}{{\rm e}^{{\it RootOf} \left ( -{{\rm e}^{{\it \_Z}}}\ln \left ( {\frac { \left ( {{\rm e}^{{\it \_Z}}}+9 \right ) x}{2}} \right ) +3\,{\it \_C1}\,{{\rm e}^{{\it \_Z}}}+{\it \_Z}\,{{\rm e}^{{\it \_Z}}}+{{\rm e}^{{\it \_Z}}}x+9 \right ) +x}}} \right \} \]