\[ y'(x)=\frac {y(x) \left (x^4 \log ^2(y(x))+2 x^4 \log (x) \log (y(x))+x^4 \log ^2(x)+x \log (y(x))+\log (y(x))-x+x \log (x)+\log (x)-1\right )}{x (x+1)} \] ✗ Mathematica : cpu = 2.62613 (sec), leaf count = 0 , could not solve
DSolve[Derivative[1][y][x] == ((-1 - x + Log[x] + x*Log[x] + x^4*Log[x]^2 + Log[y[x]] + x*Log[y[x]] + 2*x^4*Log[x]*Log[y[x]] + x^4*Log[y[x]]^2)*y[x])/(x*(1 + x)), y[x], x]
✓ Maple : cpu = 0.469 (sec), leaf count = 73
\[ \left \{ y \left ( x \right ) ={{\rm e}^{{\frac {-12\,\ln \left ( x \right ) \ln \left ( 1+x \right ) + \left ( -3\,{x}^{4}+4\,{x}^{3}-6\,{x}^{2}+12\,{\it \_C1}+12\,x \right ) \ln \left ( x \right ) -12\,x}{3\,{x}^{4}-4\,{x}^{3}+6\,{x}^{2}+12\,\ln \left ( 1+x \right ) -12\,{\it \_C1}-12\,x}}}} \right \} \]