2.9   ODE No. 9

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)y(x)(a+sin(log(x))+cos(log(x)))=0 Mathematica : cpu = 0.0187447 (sec), leaf count = 17

{{y(x)c1ex(a+sin(log(x)))}}

Maple : cpu = 0.04 (sec), leaf count = 14

{y(x)=_C1ex(sin(ln(x))+a)}

Hand solution

(1)dydxy(x)[a+sin(log(x))+cos(log(x))]=0

Integrating factor μ=easin(log(x))cos(log(x))dx=eaxesin(log(x))+cos(log(x))dx. To integrate sin(log(x))+cos(log(x))dx, let r=log(x), drdx=1x, then dx=xdr, But x=er, hence the integral becomes

sin(log(x))+cos(log(x))dx=[sin(r)+cos(r)]erdr(2)=ersin(r)dr+ercos(r)dr

Integrating by parts ercos(r)dr, udv=uvvdu, Let u=erdu=er and dv=cos(r)v=sin(r), hence (2) becomes

ersin(r)dr+ercos(r)dr=ersin(r)dr+ersin(r)sin(r)erdr=ersin(r)

Therefore, substituting back r=log(x) gives

sin(log(x))+cos(log(x))dx=elog(x)sin(log(x))=xsin(log(x))

Hence the integration factor is

μ=eaxesin(log(x))+cos(log(x))dx=eaxexsin(log(x))

Therefore (1) becomes

ddx(μy(x))=0

Integrating

y(x)eaxexsin(log(x))=Cy(x)=Ceaxexsin(log(x))=Ceax+xsin(log(x))=Cex(a+sin(log(x)))