\[ y'(x)=-\frac {i \left (x^4+8 x^2 y(x)^2+16 y(x)^4+8 i x\right )}{32 y(x)} \] ✗ Mathematica : cpu = 47.4469 (sec), leaf count = 0 , could not solve
DSolve[Derivative[1][y][x] == ((-I/32)*((8*I)*x + x^4 + 8*x^2*y[x]^2 + 16*y[x]^4))/y[x], y[x], x]
✓ Maple : cpu = 0.456 (sec), leaf count = 296
\[ \left \{ y \left ( x \right ) ={\sqrt {2}\sqrt { \left ( \left ( i\sqrt {3}+1 \right ) {\it \_C1}\,{{\rm Ai}^{(1)}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )}+ \left ( i\sqrt {3}+1 \right ) {{\rm Bi}^{(1)}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )}-{\frac {{x}^{2}}{2} \left ( {{\rm Ai}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )}{\it \_C1}+{{\rm Bi}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )} \right ) } \right ) \left ( {{\rm Ai}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )}{\it \_C1}+{{\rm Bi}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )} \right ) } \left ( 2\,{{\rm Ai}\left (1/2\, \left ( -\sqrt {3}+i \right ) x\right )}{\it \_C1}+2\,{{\rm Bi}\left (1/2\, \left ( -\sqrt {3}+i \right ) x\right )} \right ) ^{-1}},y \left ( x \right ) =-{\sqrt {2}\sqrt { \left ( \left ( i\sqrt {3}+1 \right ) {\it \_C1}\,{{\rm Ai}^{(1)}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )}+ \left ( i\sqrt {3}+1 \right ) {{\rm Bi}^{(1)}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )}-{\frac {{x}^{2}}{2} \left ( {{\rm Ai}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )}{\it \_C1}+{{\rm Bi}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )} \right ) } \right ) \left ( {{\rm Ai}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )}{\it \_C1}+{{\rm Bi}\left ({\frac { \left ( -\sqrt {3}+i \right ) x}{2}}\right )} \right ) } \left ( 2\,{{\rm Ai}\left (1/2\, \left ( -\sqrt {3}+i \right ) x\right )}{\it \_C1}+2\,{{\rm Bi}\left (1/2\, \left ( -\sqrt {3}+i \right ) x\right )} \right ) ^{-1}} \right \} \]