\[ (a+x (y(x)+x)) y'(x)-b-y(x) (y(x)+x)=0 \] ✓ Mathematica : cpu = 0.0465657 (sec), leaf count = 176
\[\left \{\left \{y(x)\to -\frac {-\frac {1}{\frac {a}{a^2+a x^2+b x^2}-\frac {x}{\left (a^2+a x^2+b x^2\right )^{3/2} \sqrt {c_1-\frac {1}{(a+b) \left (a^2+a x^2+b x^2\right )}}}}+a+x^2}{x}\right \},\left \{y(x)\to -\frac {-\frac {1}{\frac {x}{\left (a^2+a x^2+b x^2\right )^{3/2} \sqrt {c_1-\frac {1}{(a+b) \left (a^2+a x^2+b x^2\right )}}}+\frac {a}{a^2+a x^2+b x^2}}+a+x^2}{x}\right \}\right \}\]
✓ Maple : cpu = 0.082 (sec), leaf count = 93
\[ \left \{ y \left ( x \right ) ={\frac {1}{-{a}^{2}+{\it \_C1}} \left ( -abx-{\it \_C1}\,x+\sqrt {{\it \_C1}\, \left ( a+b \right ) \left ( a{x}^{2}+b{x}^{2}+{a}^{2}-{\it \_C1} \right ) } \right ) },y \left ( x \right ) ={\frac {1}{{a}^{2}-{\it \_C1}} \left ( abx+{\it \_C1}\,x+\sqrt {{\it \_C1}\, \left ( a+b \right ) \left ( a{x}^{2}+b{x}^{2}+{a}^{2}-{\it \_C1} \right ) } \right ) } \right \} \]