2.1590   ODE No. 1590

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ (x-a)^5 (x-b)^5 y^{(5)}(x)-c y(x)=0 \] Mathematica : cpu = 299.998 (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 3.146 (sec), leaf count = 553

\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {{\rm e}^{\int \!-4\,{\frac { \left ( \left ( -b-{\it \_f}/4 \right ) {{\rm e}^{ \left ( \int \!{\it \_g} \left ( {\it \_f} \right ) \,{\rm d}{\it \_f}+{\it \_C1} \right ) \left ( a-b \right ) }}+a+{\it \_f}/4 \right ) {\it \_g} \left ( {\it \_f} \right ) }{{{\rm e}^{ \left ( \int \!{\it \_g} \left ( {\it \_f} \right ) \,{\rm d}{\it \_f}+{\it \_C1} \right ) \left ( a-b \right ) }}-1}}\,{\rm d}{\it \_f}+{\it \_C2}}},[ \left \{ {\frac {1}{ \left ( {\it \_g} \left ( {\it \_f} \right ) \right ) ^{2}} \left ( \left ( {\frac {{\rm d}^{3}}{{\rm d}{{\it \_f}}^{3}}}{\it \_g} \left ( {\it \_f} \right ) \right ) \left ( {\it \_g} \left ( {\it \_f} \right ) \right ) ^{2}+10\,{\it \_g} \left ( {\it \_f} \right ) \left ( -{\frac {\rm d}{{\rm d}{\it \_f}}}{\it \_g} \left ( {\it \_f} \right ) + \left ( {\it \_g} \left ( {\it \_f} \right ) \right ) ^{2} \left ( a+b+{\it \_f}/2 \right ) \right ) {\frac {{\rm d}^{2}}{{\rm d}{{\it \_f}}^{2}}}{\it \_g} \left ( {\it \_f} \right ) +15\, \left ( {\frac {\rm d}{{\rm d}{\it \_f}}}{\it \_g} \left ( {\it \_f} \right ) \right ) ^{3}-30\, \left ( a+b+{\it \_f}/2 \right ) \left ( {\frac {\rm d}{{\rm d}{\it \_f}}}{\it \_g} \left ( {\it \_f} \right ) \right ) ^{2} \left ( {\it \_g} \left ( {\it \_f} \right ) \right ) ^{2}+35\, \left ( {\it \_g} \left ( {\it \_f} \right ) \right ) ^{3} \left ( 2/7+ \left ( 2/7\,{{\it \_f}}^{2}+ \left ( {\frac {8\,a}{7}}+{\frac {8\,b}{7}} \right ) {\it \_f}+{a}^{2}+{\frac {18\,ab}{7}}+{b}^{2} \right ) {\it \_g} \left ( {\it \_f} \right ) \right ) {\frac {\rm d}{{\rm d}{\it \_f}}}{\it \_g} \left ( {\it \_f} \right ) -96\, \left ( {\it \_g} \left ( {\it \_f} \right ) \right ) ^{5} \left ( \left ( {\frac {{{\it \_f}}^{5}}{96}}+ \left ( {\frac {5\,a}{48}}+{\frac {5\,b}{48}} \right ) {{\it \_f}}^{4}+ \left ( {\frac {35\,{a}^{2}}{96}}+{\frac {15\,ab}{16}}+{\frac {35\,{b}^{2}}{96}} \right ) {{\it \_f}}^{3}+{\frac { \left ( 25\,a+25\,b \right ) {{\it \_f}}^{2}}{48} \left ( {a}^{2}+{\frac {22\,ab}{5}}+{b}^{2} \right ) }+ \left ( 1/4\,{a}^{4}+{\frac {19\,{a}^{3}b}{6}}+13/2\,{a}^{2}{b}^{2}+{\frac {19\,{b}^{3}a}{6}}+1/4\,{b}^{4} \right ) {\it \_f}+{a}^{4}b+13/3\,{a}^{3}{b}^{2}+13/3\,{a}^{2}{b}^{3}+{b}^{4}a-{\frac {c}{96}} \right ) \left ( {\it \_g} \left ( {\it \_f} \right ) \right ) ^{2}+{\frac { \left ( 25\,a+25\,b+{\frac {25}{2}}\,{\it \_f} \right ) {\it \_g} \left ( {\it \_f} \right ) }{48} \left ( 2/5\,{{\it \_f}}^{2}+ \left ( 8/5\,a+8/5\,b \right ) {\it \_f}+{a}^{2}+{\frac {22\,ab}{5}}+{b}^{2} \right ) }+{\frac {5\,a}{16}}+{\frac {5\,b}{16}}+{\frac {5\,{\it \_f}}{32}} \right ) \right ) }=0 \right \} , \left \{ {\it \_f}={\frac { \left ( a-x \right ) \left ( b-x \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) -4\,xy \left ( x \right ) }{y \left ( x \right ) }},{\it \_g} \left ( {\it \_f} \right ) ={\frac { \left ( y \left ( x \right ) \right ) ^{2}}{ \left ( a-x \right ) \left ( b-x \right ) \left ( y \left ( x \right ) \left ( a-x \right ) \left ( b-x \right ) {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) - \left ( a-x \right ) \left ( b-x \right ) \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}- \left ( a+b-2\,x \right ) y \left ( x \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) -4\, \left ( y \left ( x \right ) \right ) ^{2} \right ) }} \right \} , \left \{ x={\frac {b{{\rm e}^{ \left ( \int \!{\it \_g} \left ( {\it \_f} \right ) \,{\rm d}{\it \_f}+{\it \_C1} \right ) \left ( a-b \right ) }}-a}{{{\rm e}^{ \left ( \int \!{\it \_g} \left ( {\it \_f} \right ) \,{\rm d}{\it \_f}+{\it \_C1} \right ) \left ( a-b \right ) }}-1}},y \left ( x \right ) ={{\rm e}^{\int \!-4\,{\frac { \left ( \left ( -b-{\it \_f}/4 \right ) {{\rm e}^{ \left ( \int \!{\it \_g} \left ( {\it \_f} \right ) \,{\rm d}{\it \_f}+{\it \_C1} \right ) \left ( a-b \right ) }}+a+{\it \_f}/4 \right ) {\it \_g} \left ( {\it \_f} \right ) }{{{\rm e}^{ \left ( \int \!{\it \_g} \left ( {\it \_f} \right ) \,{\rm d}{\it \_f}+{\it \_C1} \right ) \left ( a-b \right ) }}-1}}\,{\rm d}{\it \_f}+{\it \_C2}}} \right \} ] \right ) \right \} \]