\[ y''(x)=-a y(x) \csc ^2(x) \] ✓ Mathematica : cpu = 0.0774697 (sec), leaf count = 61
\[\left \{\left \{y(x)\to \sqrt [4]{-\sin ^2(x)} \left (c_1 P_{-\frac {1}{2}}^{\frac {1}{2} \sqrt {1-4 a}}(\cos (x))+c_2 Q_{-\frac {1}{2}}^{\frac {1}{2} \sqrt {1-4 a}}(\cos (x))\right )\right \}\right \}\]
✓ Maple : cpu = 0.486 (sec), leaf count = 132
\[ \left \{ y \left ( x \right ) ={1\sqrt {-2\,\cos \left ( 2\,x \right ) +2}\sqrt [4]{2\,\cos \left ( 2\,x \right ) +2} \left ( {\frac {\cos \left ( 2\,x \right ) }{2}}-{\frac {1}{2}} \right ) ^{{\frac {1}{4}\sqrt {1-4\,a}}} \left ( \sqrt {2\,\cos \left ( 2\,x \right ) +2}{\mbox {$_2$F$_1$}({\frac {1}{4}\sqrt {1-4\,a}}+{\frac {3}{4}},{\frac {1}{4}\sqrt {1-4\,a}}+{\frac {3}{4}};\,{\frac {3}{2}};\,{\frac {\cos \left ( 2\,x \right ) }{2}}+{\frac {1}{2}})}{\it \_C2}+{\mbox {$_2$F$_1$}({\frac {1}{4}\sqrt {1-4\,a}}+{\frac {1}{4}},{\frac {1}{4}\sqrt {1-4\,a}}+{\frac {1}{4}};\,{\frac {1}{2}};\,{\frac {\cos \left ( 2\,x \right ) }{2}}+{\frac {1}{2}})}{\it \_C1} \right ) {\frac {1}{\sqrt {\sin \left ( 2\,x \right ) }}}} \right \} \]