\[ (a x+b) y'(x)+c y(x)+\left (x^2-1\right ) y''(x)=0 \] ✓ Mathematica : cpu = 0.183564 (sec), leaf count = 190
\[\left \{\left \{y(x)\to \frac {1}{2} (x-1)^{\frac {1}{2} (-a-b)} \left (2 c_1 (x-1)^{\frac {a+b}{2}} \, _2F_1\left (\frac {1}{2} \left (a-\sqrt {a^2-2 a-4 c+1}-1\right ),\frac {1}{2} \left (a+\sqrt {a^2-2 a-4 c+1}-1\right );\frac {a+b}{2};\frac {1-x}{2}\right )+c_2 (x-1) 2^{\frac {a+b}{2}} \, _2F_1\left (\frac {1}{2} \left (-b-\sqrt {a^2-2 a-4 c+1}+1\right ),\frac {1}{2} \left (-b+\sqrt {a^2-2 a-4 c+1}+1\right );\frac {1}{2} (-a-b+4);\frac {1-x}{2}\right )\right )\right \}\right \}\]
✓ Maple : cpu = 0.141 (sec), leaf count = 134
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\mbox {$_2$F$_1$}(-{\frac {1}{2}}+{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+{\frac {a}{2}},-{\frac {1}{2}}-{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+{\frac {a}{2}};\,{\frac {a}{2}}-{\frac {b}{2}};\,{\frac {1}{2}}+{\frac {x}{2}})}+{\it \_C2}\, \left ( {\frac {1}{2}}+{\frac {x}{2}} \right ) ^{1-{\frac {a}{2}}+{\frac {b}{2}}}{\mbox {$_2$F$_1$}({\frac {1}{2}}+{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+{\frac {b}{2}},{\frac {1}{2}}-{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+{\frac {b}{2}};\,2-{\frac {a}{2}}+{\frac {b}{2}};\,{\frac {1}{2}}+{\frac {x}{2}})} \right \} \]