\[ -y(x) \left (a b+b^2 x^2\right )+a y'(x)+x^2 y''(x)=0 \] ✓ Mathematica : cpu = 18.5256 (sec), leaf count = 37
\[\left \{\left \{y(x)\to e^{b x} \left (c_2 \int _1^x e^{\frac {a}{K[1]}-2 b K[1]} \, dK[1]+c_1\right )\right \}\right \}\]
✓ Maple : cpu = 0.558 (sec), leaf count = 178
\[ \left \{ y \left ( x \right ) =\sqrt {x} \left ( {{\rm e}^{bx}}{\it HeunD} \left ( -4\,\sqrt {2}\sqrt {ab},-1-4\,\sqrt {2}\sqrt {ab},8\,\sqrt {2}\sqrt {ab},-4\,\sqrt {2}\sqrt {ab}+1,{1 \left ( \sqrt {2}\sqrt {ab}x-a \right ) \left ( \sqrt {2}\sqrt {ab}x+a \right ) ^{-1}} \right ) {\it \_C2}+{\it HeunD} \left ( 4\,\sqrt {2}\sqrt {ab},-1-4\,\sqrt {2}\sqrt {ab},8\,\sqrt {2}\sqrt {ab},-4\,\sqrt {2}\sqrt {ab}+1,{1 \left ( \sqrt {2}\sqrt {ab}x-a \right ) \left ( \sqrt {2}\sqrt {ab}x+a \right ) ^{-1}} \right ) {{\rm e}^{{\frac {-b{x}^{2}+a}{x}}}}{\it \_C1} \right ) \right \} \]