\[ y'(x)=-\frac {y(x) \left (x^2 y(x) (-\coth (x+1))+\log (x-1)+x \coth (x+1)\right )}{x \log (x-1)} \] ✗ Mathematica : cpu = 3599.96 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.351 (sec), leaf count = 108
\[ \left \{ y \left ( x \right ) ={1 \left ( {{\rm e}^{-\int \!{\frac {-\ln \left ( x-1 \right ) \sinh \left ( 1+x \right ) -x\cosh \left ( 1+x \right ) }{\sinh \left ( 1+x \right ) x\ln \left ( x-1 \right ) }}\,{\rm d}x}} \right ) ^{-1} \left ( {\it \_C1}+\int \!-{\frac {x\cosh \left ( 1+x \right ) }{\ln \left ( x-1 \right ) \sinh \left ( 1+x \right ) }{{\rm e}^{\int \!{\frac {-\ln \left ( x-1 \right ) \sinh \left ( 1+x \right ) -x\cosh \left ( 1+x \right ) }{\sinh \left ( 1+x \right ) x\ln \left ( x-1 \right ) }}\,{\rm d}x}}}\,{\rm d}x \right ) ^{-1}} \right \} \]