\[ a x^n f\left (y'(x)\right )+x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.111471 (sec), leaf count = 114
\[\text {Solve}\left [\left \{y(x)=a f(\text {K$\$$3587414}) x^n+\text {K$\$$3587414} x,x=\left (n f(\text {K$\$$3587414})^{\frac {1}{n}-1} \left (\int _1^{\text {K$\$$3587414}} -\frac {f(K[1])^{\frac {n-1}{n}-1}}{a n} \, dK[1]\right )-f(\text {K$\$$3587414})^{\frac {1}{n}-1} \left (\int _1^{\text {K$\$$3587414}} -\frac {f(K[1])^{\frac {n-1}{n}-1}}{a n} \, dK[1]\right )+c_1 f(\text {K$\$$3587414})^{\frac {1}{n}-1}\right ){}^{\frac {1}{n-1}}\right \},\{y(x),\text {K$\$$3587414}\}\right ]\] ✓ Maple : cpu = 0.279 (sec), leaf count = 169
\[ \left \{ [y \left ( {\it \_T} \right ) =a \left ( \left ( {\frac {1}{af \left ( {\it \_T} \right ) n} \left ( \left ( 1-n \right ) \int \! \left ( f \left ( {\it \_T} \right ) \right ) ^{-{n}^{-1}}\,{\rm d}{\it \_T}+{\it \_C1}\,an \right ) } \right ) ^{ \left ( n-1 \right ) ^{-1}} \left ( f \left ( {\it \_T} \right ) \right ) ^{{\frac {1}{n \left ( n-1 \right ) }}} \right ) ^{n}f \left ( {\it \_T} \right ) + \left ( {\frac {1}{af \left ( {\it \_T} \right ) n} \left ( \left ( 1-n \right ) \int \! \left ( f \left ( {\it \_T} \right ) \right ) ^{-{n}^{-1}}\,{\rm d}{\it \_T}+{\it \_C1}\,an \right ) } \right ) ^{ \left ( n-1 \right ) ^{-1}} \left ( f \left ( {\it \_T} \right ) \right ) ^{{\frac {1}{n \left ( n-1 \right ) }}}{\it \_T},x \left ( {\it \_T} \right ) = \left ( {\frac {1}{af \left ( {\it \_T} \right ) n} \left ( \left ( 1-n \right ) \int \! \left ( f \left ( {\it \_T} \right ) \right ) ^{-{n}^{-1}}\,{\rm d}{\it \_T}+{\it \_C1}\,an \right ) } \right ) ^{ \left ( n-1 \right ) ^{-1}} \left ( f \left ( {\it \_T} \right ) \right ) ^{{\frac {1}{n \left ( n-1 \right ) }}}] \right \} \]