\[ -2 x^2 y'(x)+2 y'(x)^2+3 x y(x)=0 \] ✓ Mathematica : cpu = 0.479202 (sec), leaf count = 189
\[\left \{\text {Solve}\left [\frac {1}{3} \log (y(x))-\frac {\sqrt {x^4-6 x y(x)} \left (\log \left (\frac {x^{3/2}}{\sqrt {x^3-6 y(x)}}+1\right )-\log \left (1-\frac {x^{3/2}}{\sqrt {x^3-6 y(x)}}\right )\right )}{3 \sqrt {x} \sqrt {x^3-6 y(x)}}=c_1,y(x)\right ],\text {Solve}\left [\frac {\sqrt {x^4-6 x y(x)} \left (\log \left (\frac {x^{3/2}}{\sqrt {x^3-6 y(x)}}+1\right )-\log \left (1-\frac {x^{3/2}}{\sqrt {x^3-6 y(x)}}\right )\right )}{3 \sqrt {x} \sqrt {x^3-6 y(x)}}+\frac {1}{3} \log (y(x))=c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 1.521 (sec), leaf count = 74
\[ \left \{ y \left ( x \right ) ={\frac {{x}^{3}}{6}},y \left ( x \right ) ={\frac {1}{3\,{\it \_C1}} \left ( -\sqrt {-6\,{\it \_C1}\,x}x+3 \right ) },y \left ( x \right ) ={\frac {1}{3\,{\it \_C1}} \left ( \sqrt {-6\,{\it \_C1}\,x}x+3 \right ) },y \left ( x \right ) =-{\frac {x}{3}\sqrt {-6\,{\it \_C1}\,x}}+{\it \_C1},y \left ( x \right ) ={\frac {x}{3}\sqrt {-6\,{\it \_C1}\,x}}+{\it \_C1} \right \} \]