\[ y'(x)^2+e^x \left (y'(x)-y(x)\right )=0 \] ✓ Mathematica : cpu = 0.896739 (sec), leaf count = 134
\[\left \{\text {Solve}\left [-\frac {-e^{x/2} \sqrt {4 y(x)+e^x}-4 y(x) \log \left (\sqrt {4 y(x)+e^x}+e^{x/2}\right )+e^x}{2 y(x)}=c_1,y(x)\right ],\text {Solve}\left [2 \log (y(x))-\frac {e^{x/2} \sqrt {4 y(x)+e^x}+4 y(x) \log \left (\sqrt {4 y(x)+e^x}+e^{x/2}\right )+e^x}{2 y(x)}=c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 6.373 (sec), leaf count = 115
\[ \left \{ \ln \left ( y \left ( x \right ) \right ) -{\frac {1}{2\,y \left ( x \right ) }\sqrt {{{\rm e}^{2\,x}}+4\,y \left ( x \right ) {{\rm e}^{x}}}}-2\,{\it Artanh} \left ( \sqrt {{{\rm e}^{2\,x}}+4\,y \left ( x \right ) {{\rm e}^{x}}}{{\rm e}^{-x}} \right ) -{\frac {{{\rm e}^{x}}}{2\,y \left ( x \right ) }}-{\it \_C1}=0,\ln \left ( y \left ( x \right ) \right ) +{\frac {1}{2\,y \left ( x \right ) }\sqrt {{{\rm e}^{2\,x}}+4\,y \left ( x \right ) {{\rm e}^{x}}}}+2\,{\it Artanh} \left ( \sqrt {{{\rm e}^{2\,x}}+4\,y \left ( x \right ) {{\rm e}^{x}}}{{\rm e}^{-x}} \right ) -{\frac {{{\rm e}^{x}}}{2\,y \left ( x \right ) }}-{\it \_C1}=0 \right \} \]