\[ x^4 y''(x)-x \left (x^2+2 y(x)\right ) y'(x)+4 y(x)^2=0 \] ✓ Mathematica : cpu = 0.0685251 (sec), leaf count = 262
\[\left \{\left \{y(x)\to -\frac {x^3 \left (i \left (-\frac {\sqrt {-c_1-1}}{\sqrt {c_1}}+\frac {i}{\sqrt {c_1}}\right ) \sqrt {c_1} c_2 x^{-1+i \left (-\frac {\sqrt {-c_1-1}}{\sqrt {c_1}}+\frac {i}{\sqrt {c_1}}\right ) \sqrt {c_1}}+i \left (\frac {\sqrt {-c_1-1}}{\sqrt {c_1}}+\frac {i}{\sqrt {c_1}}\right ) \sqrt {c_1} x^{-1+i \left (\frac {\sqrt {-c_1-1}}{\sqrt {c_1}}+\frac {i}{\sqrt {c_1}}\right ) \sqrt {c_1}}\right )}{c_2 x^{i \left (-\frac {\sqrt {-c_1-1}}{\sqrt {c_1}}+\frac {i}{\sqrt {c_1}}\right ) \sqrt {c_1}}+x^{i \left (\frac {\sqrt {-c_1-1}}{\sqrt {c_1}}+\frac {i}{\sqrt {c_1}}\right ) \sqrt {c_1}}}\right \}\right \}\] ✓ Maple : cpu = 0.138 (sec), leaf count = 21
\[ \left \{ y \left ( x \right ) ={x}^{2} \left ( \tanh \left ( {\it \_C1}\, \left ( {\it \_C2}-\ln \left ( x \right ) \right ) \right ) {\it \_C1}+1 \right ) \right \} \]