\[ y'(x)=e^{2 x^2} x y(x) \left (e^{-x^2} y(x)+e^{-2 x^2}+y(x)^2\right ) \] ✓ Mathematica : cpu = 0.254979 (sec), leaf count = 135
\[\text {Solve}\left [-\frac {25}{3} \text {RootSum}\left [-25 \text {$\#$1}^3+24 \sqrt [3]{-1} 5^{2/3} \text {$\#$1}-25\& ,\frac {\log \left (\frac {e^{x^2} x \left (3 e^{x^2} y(x)+1\right )}{5^{2/3} \sqrt [3]{-e^{3 x^2} x^3}}-\text {$\#$1}\right )}{8 \sqrt [3]{-1} 5^{2/3}-25 \text {$\#$1}^2}\& \right ]=c_1+\frac {5}{18} \sqrt [3]{5} e^{-2 x^2} \left (-e^{3 x^2} x^3\right )^{2/3},y(x)\right ]\]
✓ Maple : cpu = 0.233 (sec), leaf count = 122
\[ \left \{ y \left ( x \right ) ={\frac {1}{2\,{{\rm e}^{{x}^{2}}}} \left ( \sqrt {11}\tan \left ( {\it RootOf} \left ( -4\,\sqrt {11}{x}^{2}+4\,\sqrt {11}\ln \left ( 11 \right ) +8\,\sqrt {11}\ln \left ( -{\frac {36\,\sqrt {11}}{11}}+36\,\tan \left ( {\it \_Z} \right ) \right ) -4\,\sqrt {11}\ln \left ( {\frac {2592\,\sqrt {11} \left ( {{\rm e}^{{x}^{2}}} \right ) ^{2}\tan \left ( {\it \_Z} \right ) }{25}}-{\frac {2592\,\sqrt {11}{{\rm e}^{2\,{x}^{2}}}\tan \left ( {\it \_Z} \right ) }{25}}+{\frac {14256\,{{\rm e}^{2\,{x}^{2}}} \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}}{25}}+{\frac {2592\, \left ( {{\rm e}^{{x}^{2}}} \right ) ^{2}}{5}}+{\frac {1296\,{{\rm e}^{2\,{x}^{2}}}}{25}} \right ) +9\,\sqrt {11}{\it \_C1}-8\,{\it \_Z} \right ) \right ) -1 \right ) } \right \} \]