\[ y'(x)=\frac {\frac {1}{16} x^3 y(x)^3-\frac {1}{2} x^2 y(x)^3-\frac {3}{8} x^2 y(x)^2+x y(x)^3+x y(x)^2+\frac {3}{4} x y(x)-\frac {1}{2}}{x (x y(x)-2 y(x)-2)} \] ✓ Mathematica : cpu = 0.0301499 (sec), leaf count = 77
\[\left \{\left \{y(x)\to \frac {2 \left (\sqrt {c_1+2048 \log (x)}-64\right )}{x \left (\sqrt {c_1+2048 \log (x)}-64\right )+128}\right \},\left \{y(x)\to \frac {2 \left (\sqrt {c_1+2048 \log (x)}+64\right )}{x \left (\sqrt {c_1+2048 \log (x)}+64\right )-128}\right \}\right \}\]
✓ Maple : cpu = 0.077 (sec), leaf count = 67
\[ \left \{ y \left ( x \right ) ={1 \left ( 2\,\sqrt {{\it \_C1}+8\,\ln \left ( x \right ) }-8 \right ) \left ( x\sqrt {{\it \_C1}+8\,\ln \left ( x \right ) }-4\,x+8 \right ) ^{-1}},y \left ( x \right ) ={1 \left ( 2\,\sqrt {{\it \_C1}+8\,\ln \left ( x \right ) }+8 \right ) \left ( x\sqrt {{\it \_C1}+8\,\ln \left ( x \right ) }+4\,x-8 \right ) ^{-1}} \right \} \]