\[ y'(x)=\frac {x^6 y(x)^3+x^6 y(x)^2+x^6+\frac {x^5}{2}+\frac {3}{4} x^4 y(x)^2+\frac {1}{2} x^4 y(x)+\frac {3}{16} x^2 y(x)+\frac {x^2}{16}+\frac {1}{64}}{x^8} \] ✓ Mathematica : cpu = 0.106033 (sec), leaf count = 101
\[\text {Solve}\left [29^{2/3} \left (\frac {1}{x^6}\right )^{2/3} x^3=87 \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {12 x^2 y(x)+4 x^2+3}{4 \sqrt [3]{29} \sqrt [3]{\frac {1}{x^6}} x^4}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]+9 c_1,y(x)\right ]\]
✓ Maple : cpu = 0.041 (sec), leaf count = 47
\[ \left \{ y \left ( x \right ) ={\frac {116\,{\it RootOf} \left ( -81\,\int ^{{\it \_Z}}\! \left ( 841\,{{\it \_a}}^{3}-27\,{\it \_a}+27 \right ) ^{-1}{d{\it \_a}}x+3\,x{\it \_C1}-1 \right ) {x}^{2}-12\,{x}^{2}-9}{36\,{x}^{2}}} \right \} \]