\[ y'(x)=\frac {y(x) \left (3 x y(x)^2+3 y(x)^2+x\right )}{x (x+1) \left (6 y(x)^2+x\right )} \] ✓ Mathematica : cpu = 0.69356 (sec), leaf count = 70
\[\left \{\left \{y(x)\to -\frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{2 c_1} x}{(x+1)^2}\right )}}{\sqrt {6}}\right \},\left \{y(x)\to \frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{2 c_1} x}{(x+1)^2}\right )}}{\sqrt {6}}\right \}\right \}\]
✓ Maple : cpu = 0.343 (sec), leaf count = 51
\[ \left \{ \left ( \left ( y \left ( x \right ) \right ) ^{-2}+6\,{x}^{-1} \right ) ^{-1}={\frac {x}{54} \left ( {{\rm e}^{{\it RootOf} \left ( -{{\rm e}^{{\it \_Z}}}\ln \left ( {\frac { \left ( 1+x \right ) ^{2} \left ( {{\rm e}^{{\it \_Z}}}+9 \right ) }{2\,x}} \right ) +3\,{{\rm e}^{{\it \_Z}}}{\it \_C1}+{\it \_Z}\,{{\rm e}^{{\it \_Z}}}+9 \right ) }}+9 \right ) } \right \} \]